Finding Tribes: Identifying Close-Knit Individuals from Employment Patterns

Lisa Friedland and David Jensen

Department of Computer Science
University of Massachusetts, Amherst

Overview

In the securities industry, fraud can be perpetuated by tribes of employees colluding at multiple jobs. We present a family of algorithms that uses employment histories to detect such tribes: small groups of individuals
sharing unusual sequences of affiliations. We treat this as an anomaly sharing unusual sequences of affiliations. We treat this as an anomat
detection task and develop models describing typical vs. atypical job transitions within the industry. The resulting tribes tend to be homogen with respect to risk scores and geographically mobile, and they contain individuals at high risk for fraud.

Motivation

National Association of Securities Dealers (NASD) oversees securities firms in the United States and their registered representatives, or "reps." Responsible for preventing, identifying, and taking regulatory action for
cases of fraud cases of fraud
Hypothesis: Colluding groups of reps, or tribes, often move togethe through multiple places of employment to commit fraud Task: Find such groups.
Data Characteristics

1. Employments are not sequential.

Rep	Branch ID	Start Date	End Date
John A. Doe	107	Jan 1985	Oct 1987
John A. Doe	291	Jan 1985	Nov 2000
John A. Doe	382	Mar 1988	Dec 1988
John A. Doe	107	Dec 2003	present

Employment stints overlap or leave gaps.
Reps may take different paths between same jobs.
2. Want to factor out background patterns to identify reps that stay together intentionally.

Mass movements are common. Reps may share multiple jobs by

hance, due to patterns of transitions in the industry, e.g Typical career paths within different cities
3. Large NASD data set: 4.8 million employment records, 2.5 million reps, 560,000 branch offices.

Basic Method

1. Find all pairs of reps that have ever worked together.
2. For each pair, examine list of jobs they have shared. Decide if job sequence is anomalous [see below].
3. Each set of reps connected by anomalous links $\Rightarrow a$ tribe.

Scoring/Ranking Functions

Given a sequence of jobs that two reps have shared. Under the nul hypothesis of reps moving independently, is it likely to arise by chance? an iss

Simple

- JOBS: Count the number of jobs shared. High \leftrightarrow unlikely.
- YEARS: Add up time overlapping at each jobs. High \leftrightarrow ulikely

Probabilistic

PROB: Modification of a Markov chain. Low likelihood job sequence Modification of a Markov chain. Low likelihood job
unlikely for two reps to share the sequence. Markov chain approach

Transition model

Modifications allow:

Family of probabilistic models

- PROB-TIMEBINS: transition rates differ each year
- PROB-NOTIME: it doesn't matter which job came firs

Results
Scored the ~ 3 million pairs of reps who had worked at least 3 jobs together
Used three scoring functions to rank pairs: JOBS, YEARS, PROB. Figures compare sets of tribes matched to contain 1600 individual PRROB-TIMEBINS and PROB-NOTIME omitted here, but similar to
PROB.
\rightarrow Reps in tribes have high risk scores under PROB and JOBS.

\rightarrow Tribes are homogenous with respect to risk scores.

For top tribes: phi-square statistic (normalized chi-square) on presence of risk scores among 2-person tribes; AUC of task
\rightarrow PROB and JOBS models succeed at identifying rare job sequences.

\rightarrow Pairs ranked highly by PROB models are more geographically mobile per shared branch.

