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Identify examples

Extending Trees to a Relational Setting
• Heterogeneous data instances

• Models need to consider relational neighborhoods which vary in size
• Makes direct application of conventional techniques difficult

• Non-independent instances
• Greatly complicates the statistics of both learning and inference

• Jensen and Neville ICML2002, Jensen, Neville and Hay ICML2003

Feature Selection Biases

Relational Probability Trees (RPTs)

• Linkage and autocorrelation increase
variance of feature scores
• Increases probability  of selecting

random features

• Degree disparity and aggregation
increase bias of feature scores
• Increases probability of selecting

surrogate degree features

• Novel randomization tests account for relational data characteristics and provide
a method for accurate hypothesis testing
• Retain relational structure (e.g. autocorrelation, degree disparity)
• Randomize attribute values before aggregation
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URLpath: courses

LinkedToPage: Mode(URLpath)=courses

URLpath: projects

URLpath: courses

URLpath: faculty

LinkedFromPage: Count(outlinks>25)>1

Outlinks: 127

Outlinks: 31

Outlinks: 15

LinkedFromPage: Degree>2

Input
• Collection of subgraphs
• Each contains a single target object to be

classified, other objects and links in
subgraph form relational neighborhood

Output
• RPT model: conditional probability

distribution over target class label
• RPT represents a series of questions to

ask about a subgraph

Learning Algorithm
• Recursive partitioning algorithm
• Searches binary relational feature space

• Aggregation functions map a set of
values into a single value

• Avg/Mode, Count, Proportion, Degree
• Chi-square feature scores measure

association with class
• Bonferroni-adjusted p-value cutoff stops

tree growth
• Randomization tests adjust for feature

selection biases

Conclusions
• RPTs built using randomization tests (RTs) are significantly smaller than other

models and achieve equivalent, or better, performance
• CTs and C4.5 select surrogates for degree and have unnecessary complexity
• RBC models perform poorly when degree is only feature correlated with class

Propositionalize examples

Learn model

Canada

New York

New York

Hollywood

Mode
Studio

Location

N22M+
N51F-
Y33M+
N28F+

Mode
Actor
Oscar

Average
Actor Age

Mode
Actor
Gender

Receipts
>$2mil

Empirical Evaluation
Four algorithms

• Conventional test RPT (CT)
• Randomization test RPT (RT)
• C4.5 with flattened features used in RPT
• Relational Bayes classifier (RBC)

Five datasets
• Random IMDb, IMDb, Cora, WebKB, Gene

Performance measurements
• Accuracy, area under ROC curve (AUC)
• Tree size, weighted proportion of degree features


