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ABSTRACT 
We present a family of algorithms to uncover tribes—groups of 
individuals who share unusual sequences of affiliations.  While 
much work inferring community structure describes large-scale 
trends, we instead search for small groups of tightly linked 
individuals who behave anomalously with respect to those trends. 
We apply the algorithms to a large temporal and relational data set 
consisting of millions of employment records from the National 
Association of Securities Dealers. The resulting tribes contain 
individuals at higher risk for fraud, are homogenous with respect 
to risk scores, and are geographically mobile, all at significant 
levels compared to random or to other sets of individuals who 
share affiliations. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
mining; I.5.1 [Pattern Recognition]: Models – Statistical; J.4 
[Social and Behavioral Sciences]. 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Social networks, dynamic networks, anomaly detection. 

1. INTRODUCTION 
In relational and social network data sets, social structure among 
individuals offers vital explanatory power for prediction tasks. 
Achieving a clearer view of the connections between entities, 
particularly in dynamic temporal domains, promises to aid 
analyses of the data. This research seeks to infer close 
relationships among certain co-workers, given a database of 
affiliation histories. Specifically, we search for groups of 
individuals, which we call tribes, that have anomalously similar 
job sequences within a large industry. We want to identify 
employees who were co-workers at multiple jobs, and to 
distinguish those who worked together intentionally from those 
who simply shared frequently occurring employment patterns in 
the industry. 

Relational knowledge discovery [11] exploits connections among 
individuals, as well as intrinsic attributes, to identify patterns and 

make predictions. In relational, or network-structured, data sets, 
linked entities often display underlying dependencies such as 
autocorrelation, or homophily: the tendency of connected entities 
to have similar attribute values [18]. When the links are specified 
in source data, they can be used to infer large-scale structure, for 
instance at the level of groups or communities [17], [12], [8]. 
However, in other cases, the links themselves must first be 
inferred, whether by preprocessing to extract real-world entities 
[9], or by modeling their interactions. In this work, we identify 
fine-grained, strong associations among individuals in a large data 
set by finding small groups that are anomalously similar. 

This novel task was inspired by a case study, but it can be applied 
to a number of domains. The important properties in the scenario 
are that “individuals,” or one type of entity, are affiliated with 
“organizations,” another type of entity, and that the affiliations 
change over time. We form a model of “typical” sequences of 
affiliations, which allows us to score any given sequence of 
affiliations based on its likelihood. Then, for each pair of 
individuals, we find the sequence they have in common (if any) 
and score it. The score correlates with the likelihood that two  
individuals shared the given affiliations by chance alone, under 
the null hypothesis of independent movement.  

Other tasks with this structure include finding students that select 
classes together, given a table of students and their enrollments; 
inferring sets of cars traveling in caravan on a highway, given 
sightings at different locations and times [3]; and discovering 
family structure in animal groups, from tagged individuals 
frequently sighted together [4] (see Related Work). If we remove 
the temporal aspect of the problem and simply require a bipartite 
graph of affiliations, then a generalized version of the model 
could identify people with unusually similar tastes in movies, 
highly related documents sharing words that rarely co-occur, or 
friends within an album or yearbook containing photos of large 
groups. 

Our model is particularly suited to situations involving large 
organizations, where the original data does not describe detailed 
associations among individuals. For instance, in our employment 
domain from the securities industry, thousands of people often 
share a loose relation of working at the same branch. In such 
cases, we can benefit from learning a model of typical affiliation 
patterns. Then, against this background, small groups doing 
unusual things stand out in contrast.  

2. MOTIVATION 
The National Association of Securities Dealers (NASD) regulates 
securities firms in the United States, with responsibility for 
preventing and discovering misconduct among its registered 
representatives, also called “reps.” With over 600,000 reps under 
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its jurisdiction, NASD must focus its investigatory resources on 
those reps most likely to commit fraud or other violations of 
securities regulations. In conversations over the course of related 
projects [7], [19], NASD representatives suggested that fraud is 
sometimes committed by colluding groups of reps that pass 
together through multiple places of employment. If we could 
identify “tribes” of reps moving together from job to job, we 
could test them for elevated rates of one or more indicators of 
fraud risk. Of course, finding tribes will certainly also identify 
harmless sets of friends that worked together in the industry, 
perhaps recruiting one another to new jobs. Our hope is that we 
will discover groups in which the reps tend to be homogenous 
with respect to fraud risk: mostly low-risk or mostly high-risk. 
Such tribes could then serve as starting points for detecting new 
fraud rings. 
Our source data is a table of employment histories: for each rep, a 
series of records contains the branch identifier, start date, and end 
date for every employment the rep has held in the securities 
industry. The data set is large, containing (after some preliminary 
cleaning) 4.8 million records describing employments of 2.5 
million reps at 560,000 branch offices. The branches range in size 
from 1 to 35,000 employees. The branch identities themselves 
have been inferred, through an earlier process of link 
consolidation from office addresses [7], from the 22,000 firms 
that have ever registered with NASD. The employment histories 
span the twentieth century through today, though most records are 
from the past fifteen years.  

Two features of the real-world data shape our approach. First, 
many employment histories include simultaneous, overlapping 
jobs or leave gaps between employments. This muddies the 
concept of a transition between jobs: a rep does not necessarily 
leave one job when starting another, nor vice versa. Overlapping 
jobs are too common to consider discarding from the data: 20% of 
employees hold more than one job at some point, and 10% even 
begin multiple jobs (up to 16) on the same day. With transition 
dates ill defined, we cannot formulate this task as a search for 
employees changing jobs within a common interval of time. 
Therefore, we direct our attention to the times and places that 
people have been co-workers, as opposed to the boundaries 
between them. 

 
Figure 1. Example (hypothetical) of branch-branch transition 

patterns. The left-most edge indicates that 80% of the reps 
who ever worked at I&D Insurance were later employed by  
Cumulative Sentences. Only edges with high percentages are 

shown. 
The second key feature is that mass movements of employees 
between jobs are common. In addition to continual flows between 
firms (e.g., common career paths within a given city), the 
businesses change: branches are closed or opened; firms merge or 
are acquired. Reps in these flows could end up being colleagues at 
multiple organizations without even knowing each other. We can 

visualize such trends as transition diagrams, as in Figure 1, to 
create a map of the whole industry. The meaning of the numbers 
along the edges will be discussed and refined in Section 4.2; 
roughly speaking, they indicate the percentage of employees at 
one branch that later work at the linked (destination) branch.  

Many of these transition percentages are high, which establishes 
that job movement in the industry is not random. For instance, 
among branches of fewer than ten employees, about 73% have 
some destination where at least 90% of the employees later end 
up. Among larger branches, 30% of the branches have some 
destination where at least 50% of their employees go. These 
figures increase slightly if we ask which transitions are common 
within a given year—to spotlight abrupt shifts like mergers—as 
opposed to throughout the life of a branch office. This structured 
transition pattern is what we hope to factor out in order to find 
genuinely tight associations among individuals. 

3. TASK DESCRIPTION AND APPROACH 
3.1 Formulation 
In the most general setting, we define this task to be the 
identification  of anomalously related entities. As input, we 
require a bipartite graph 

! 

G = (R" A,E) of entities 
R = {r1, r2, …, rn} and attributes (in this case, organizations) 
A = {a1, a2, …, am}. The entities should connect to at least several 
attributes, on average, so at not to be too simply characterized.  
Each attribute should attach to a large number of entities, enough 
so that the behavior of this set of entities can be modeled.  The 
current formulation requires that an entity’s attributes be 
sequentially ordered (e.g., chronologically), while a more general 
extension would consider an unordered set. 

The groups of entities we wish to return are those sharing unusual 
combinations of attributes. Our strategy for this task revolves 
around developing a good definition of “unusual.” For an entity 
group to be considered anomalous, the shared attributes 
themselves need not be unusual, but the particular configuration 
of them should be; entity sets that are alike in typical ways are not 
part of our target. Our scores are similar in spirit to tf-idf weights 
in that they emphasize unusual shared attributes [20]; however, 
our method for estimating joint likelihoods is unique. In this 
paper, we approximate a joint distribution over sets of attributes 
by modeling the co-occurrence rate (or transition rate) of each pair 
of attributes.  Then, the likelihood of an attribute set can be 
computed as a function of the pairwise co-occurrence rates. 

3.2 Basic Tribe-Finding Process 
We are given a bipartite graph 

! 

G = (R" A,E) of reps and 
organizations. In the NASD data, each edge 

! 

e " E  is annotated 
with a time interval: e = (ri, aj, tstartij, tendij). The general tribe-
discovery process, assuming we are given such time intervals, is 
summarized in Figure 2. For our application, it begins with listing 
all pairs fij = (ri, rj) of individuals that have ever worked together. 
This can be a large list (2.6 billion pairs, in our case), generated 
by iterating through the branches and recording every pair of reps 
fij = (ri, rj) whose employment stints at a branch intersect.  



Find-Tribes(G = (R 

! 

" A, E), timeAnnotations) 

1 Determine-Candidate-Pairs(G = (R 

! 

" A, E),  
timeAnnotations): 

 1 F = null, pairAnnots = null 
 2 FOR each org of A 
 3  Get all reps associated with org 
 4  FOR each pair (ri, rj) of reps 
 5   IF timeInterval(ri, org) and  

timeInterval(rj, org) overlap THEN 
 6    F = F 

! 

" (ri, rj) 
 7    pairAnnots[ri, rj] appends org  

and times 
 8 return (graph H = (R, F), pairAnnots) 

2 Score-Candidate-Pairs(F, modelParameters) 

3 Recover-Tribes(H, d): 
 1 FOR each fij in F 
 2  IF score(fij) < d THEN delete fij 
 3 return (Tribes = connectedComponents(H)) 

Figure 2. Tribes algorithm. 
For each pair, we then summarize their co-worker relationships, 
keeping track of the jobs where they coincide. We note additional 
information, such as the date the reps first coincide at each job, 
and the total time spent at overlapping jobs. The algorithm stores 
the pairs in a new graph H = (R, F), where F = {fij}, and each edge 
is annotated with:  

pairAnnotsij = { the sequence of jobs {ax, ay, …} shared by ri 
and rj 

! 

"  additional information described above}.  

For purposes of efficiency, we retained only the rep pairs that had 
at least three jobs in common. This left us a graph H' = (R, F'), 
with |R| = 2.5 million, and |F'| = approximately 3 million pairs of 
individuals that are co-workers multiple times: the candidates for 
tribes.  

The algorithm proceeds by identifying all significant pairs. We 
compute a score cij(pairAnnotsij) for each edge in F', measuring 
how significant or unusual its sequence of shared jobs is. Section 
4.1, which follows, discusses the choice of function to use for cij. 

Once the significance scores are computed, we pick a threshold d 
for the scores and remove all edges fij for which cij < d. Then, we 
compute the connected components of H', which are designated 
the tribes. The output of the algorithm is a list of tribes: sets of 
reps within components of size two or higher in H'.  
Computationally, Step 1 of Figure 2 is the most expensive.  If the 
maximum degree of a branch is k, then we must consider O(|A|k2) 
potential pairs and store information about each pair.  Once we 
have created the graph H and pared it to a smaller H', the 
remaining steps are in O(|F'|).  Estimating the model parameters 
will generally require O(|E|), one pass through the source data. 

4. SCORING/RANKING FUNCTIONS 
The choice of scoring methods constitutes the heart of the task. 
(We also use the term “ranking method,” since we only use the 
scores to rank the pairs.) We propose and compare several. 

4.1 Simple Measures 
Given a sequence of jobs, we must decide whether it is unusual 
for a pair of co-workers to have worked together at all of these 
jobs. Two straightforward methods for ranking the pairs are:  

• JOBS = the number of jobs in the shared sequence 

• YEARS = the number of years of overlap 
Computing JOBS is a straightforward count of the job sequence. 
For years, we choose to add up the length of each overlap period, 
so that if a pair of reps works simultaneously at two branches for 
ten years, this counts as twenty years of overlap. 
These simple methods treat all branches equivalently. As 
described earlier, however, reps in the securities industry do not 
behave as if they are picking jobs out of a hat. Instead, they tend 
to follow patterns caused by industry events and influenced by 
geographical and other factors. Accounting for these patterns 
motivates the probabilistic models that follow. 

4.2 Probabilistic Model 
In developing a simplified model for the job history data, there is 
a tradeoff between flexibility and performance. We want the 
model to flexibly mimic the characteristics of each branch without 
exactly reproducing the original data. In addition, the procedure 
must be tractable on a large data set. The process of computing all 
pairs of co-workers is time- and space-intensive, so it would be 
infeasible, for example, to generate random replicates of the 
network and re-compute shared job sequences. Attempting to 
strike the right balance, we model rep movement across branches 
as a modification of a Markov chain over organizations, ignoring 
timing and duration. 

If each rep held one job at a time, and changed it at each time 
step, we could model movement using an ordinary Markov chain, 
as follows: Each rep picks a start branch randomly. Then at each 
step, the rep’s next branch is decided probabilistically based only 
on the current branch. We ignore actual time spent at each job; at 
each step in the Markov process, a rep either moves to a new 
branch, or leaves the workplace. We also assume that transition 
probabilities are static over time and that each rep chooses jobs 
independently. Using this model, we could estimate the 
probability of a rep having a job sequence such as in Figure 3a as  

x  = P(Branch A 

! 

" Branch B 

! 

" Branch C 

! 

" Branch D) 
=

! 

pA " tAB " tBC " tCD . 

The quantities to estimate are 
pi  = P(start at Branch i) 
 = (# reps ever at Branch i) / (# reps in database) 

tij = P(transition from Branch i to Branch j | [given that] 
currently at Branch i) 

 = (# reps who leave Branch i and next go to Branch j) / (# 
reps ever at Branch i). 

Under the null hypothesis of independent movement, if 
P(Rep 1 holds this sequence of jobs) = x, then P(Reps 1 and 2 
each hold this sequence of jobs) = x2.  Since ranking by x is 
equivalent to ranking by x2, it is enough to calculate x. Similarly, 
it is not necessary to compute the denominator of pi.  

If job sequences in the database were as simple as Figure 3a, this 
model would be sufficient. However, Figure 3b is more typical of 
the data. The reps in this example start at the same branches, split 
apart for a few years, come back together, and then both begin 
two jobs (Branches C and D) at the same time. To allow for these 
more complex situations, we adjust the model such that it is no 
longer a Markov chain, while keeping the probability calculations 
almost the same. 

 



  

 

The first modification is to allow reps to have different paths 
between shared jobs, such as from Branch B to Branch C in 
Figure 3b. To do this, we replace the quantity tij with a new 
quantity vij:  

vij = P(move to Branch j at any point after Branch i | 
currently at Branch i) 

    = (# reps who go to Branch j at any point after working at 
Branch i) / (# reps ever at Branch i). 

Now, each vij ≥ tij, and the transition probabilities leaving a branch 
no longer sum to 1 (

! 

t
ij

= 1
i

" , but 

! 

v
ij

i

" # 1). We cannot generate 

sequences as part of a Markov process using the vij probabilities, 
but we can still score an existing sequence of jobs using these 
estimates of how likely each transition is to occur. For Figure 3b, 
we now calculate P(Branch B

! 

" Branch C) without regard for 
the intermediate branches. This modification is much cleaner than 
an alternate approach that might attempt to compute direct 
transition probabilities along all possible paths.  
The other modification is to allow for simultaneous jobs. We treat 
the shared job sequences as if they are in a definite order, but the 
underlying situations can be complicated. For example, in Figure 
3b, the reps work at Branches C and D simultaneously, not one 
after the other. To extend the model to handle these situations, we 
replace the quantity vij with a new quantity wij: 

wij = P(move to Branch j at any point simultaneous to or after 
Branch i | currently at Branch i) 

    = (# reps who start at Branch j at any point simultaneous to 
or after starting at Branch i) / (# reps ever at Branch i). 

The same caveats apply as for vij: the transition probabilities 
become less precise and correct with respect to direct transitions, 
but they can now be used in these more general situations. 

4.3 Probabilistic Family 
The probabilistic scoring model described above, which we refer 
to as PROB, treats jobs in a sequence as being ordered by time, but 
it does not take into account when the transitions occur. A 
transition is considered equally probable whenever it takes place. 
We create two variations on the model by changing the treatment 
of time. 
First, we account for varying transition probabilities. We 
hypothesize that the scoring will be more accurate if we can 
represent single-event mass movements, as well as changes in 
industry patterns over time. For instance, consider the case where 
30% of reps at Branch A eventually move to Branch B, but in 

1997 Branch A was purchased by Branch B, so 99% of the reps 
who were at Branch A in 1997 also worked at Branch B in 1997. 
To account for such variations, rather than scoring a transition 
based on the probability of a rep moving from Branch A to 
Branch B, we describe a more specific event. Now, the rep is 
moving from Branch A at time X, to Branch B at time Y 
(specifically, the rep is first seen at Branch A at time X, and then 
first seen at Branch B at time Y which is equal to or later than 
time X). Time is divided into bins, with bins representing one year 
or more. Each branch has its own bin divisions, depending on the 
number of employees at the branch in different years. We allocate 
the bins so that there are at least 10 people who worked at each 
branch in each bin period, provided the branch has had that many 
employees during its history. 
The parameters needed for this new model, called PROB-TIMEBINS, 
require changing pi and (again) wij. We now compute 

piX = # reps ever at Branch i during time X / # reps in db 
yiXjY = # reps ever at Branch i during time X and at Branch j 

during time Y, where Y ≥ X / # reps ever at Branch i 
during time X. 

We take the opposite extreme for the second variation. The PROB 
model is not very informed about time: because the wij values 
describe the probability of being at Branch j anytime after or 
simultaneous to being at Branch i, only the relative order of i and j 
matter. To find out how important that directionality of time is, 
we create a simpler model, PROB-NOTIME, which ignores even the 
order of job moves. For this model, we use the original 

! 

pi  (again, 
no need to compute the denominator), and a transition quantity zij, 
representing the raw number of reps who are at both branches i 
and j during their careers. There is an ambiguity in this 
formulation, in that now we should be able to score a set of shared 
branches regardless of the order in which they are presented; 
however,  

transition probability from Branch i to Branch j  
= (zij / # reps ever at Branch i)   
≠ (zij / # reps ever at Branch j)  
= transition probability from Branch j to Branch i. 

As PROB-NOTIME turns out to work almost as well as PROB (see 
Section 5) and allows this framework to be applied to situations 
without a time ordering, we hope to explore the issue of ordering 
the branches in future work. For now, we use the same (temporal) 
ordering of branches as used in the other methods. 
The JOBS ranking falls out as a trivial probabilistic model.  If all 
branch transitions are considered to have the same probability, 
and all branches have the same probability of serving as a starting 
branch, then the ranking is equivalent to counting the number of 
shared jobs. 

5. EVALUATION AND RESULTS 
Ideal tribes consist of reps that know each other and have 
coordinated their movements among jobs. Since we cannot verify 
the personal relationships among thousands of securities reps 
across the country, we evaluate our tribes using indirect measures.  
First, we examine structural characteristics of the tribes produced 
with the various scoring methods.  Then, we analyze the tribes’ 
patterns of risk scores and geographic movement. 

(a) 

(b) 

Figure 3. Job sequences to score. Nodes represent branches. 
In (b), we display differing trajectories for two reps, but only 
the shared jobs (in bold) are used for scoring.  Dates describe 

start dates for each rep at each job. 



5.1 Tribe Structure 
Using the basic process described in Section 3.2, we compiled a 
list (the edges F') of the 3 million pairs of reps in the database that 
shared at least three different jobs. We ranked these pairs using 
the five scoring functions described in Section 4: JOBS, YEARS, 
PROB, PROB-TIMEBINS, and PROB-NOTIME. All but JOBS give quasi-
continuous values as scores. For these, we can choose a threshold 
d to keep any desired number of pairs. When we compute the 
connected components of these pairs, we get a set of tribes of 
assorted sizes and a corresponding set of reps in these tribes. For 
JOBS, the scores are discrete: all pairs have at least 3 jobs, and the 
maximum number of shared jobs is 25. To compare the different 
scoring functions, for each continuous method we determine a 
cutoff d such that the resulting number of reps in the tribes 
matches (+/- 1) the number of reps in tribes formed with JOBS.  

Figures 4 and 5 display structural characteristics of some tribe sets 
matched in this manner. We omit these characteristics for the 
variations on PROB (PROB-TIMEBINS and PROB-NOTIME), as they are 
substantially similar to those for PROB. Figure 4 indicates that 
PROB creates more tribes, and smaller tribes, than JOBS or YEARS. 
Figure 5 further shows that the majority of pairs created by the 
PROB ranking go into tribes of size two—pairs of associated reps. 
In contrast, JOBS and even more so YEARS, in order to get an 
equally large set of reps, provide many more pairs—edges in the 
graph F'—but the additional edges go to fill in the enormous 
components1, instead of creating new, small groups.  

 
Figure 4.  Number of tribes and maximum tribe size for equal-

size sets of reps produced using JOBS (J), PROB (P), or YEARS 
(Y) to rank pairs. 

                                                                    
1 Components with hundreds or even with dozens of nodes are 

unlikely to be tribes of the kind we are looking for. In practice, 
we would probably disregard tribes with more than ten 
members. Dropping the larger tribes does not seem to change 
the evaluation measures, so we leave them in for the remaining 
analysis. 

 

Figure 5.  Number of pairs, and number of pairs in two-
person tribes, for equal-size sets of reps produced using JOBS 

(J, j), PROB (P, p), or YEARS (Y, y). 
We can see this effect from another perspective by considering the 
rarity of high-ranked job sequences.  For JOBS and PROB, the 
scores are based solely on the job sequence; therefore, if a number 
of reps all share an identical job sequence, then the scores of their 
edges are equal. If that (shared) score passes the threshold, then 
the whole set of reps will be included in the tribes. For this reason, 
a ranking that scores common job sequences as significant will 
have large connected components among its tribes.  

Table 1 shows the average, for each pair included in tribes, of the 
number of times its shared job sequence occurs among the 3 
million pairs.  The low averages for the PROB ranking confirm that 
this model succeeds in scoring rare sequences as significant. JOBS 
also brings in fairly rare sequences.  For YEARS, when one pair 
passes the threshold d, others with the same job sequence do not 
necessarily cross it, since the score depends on how long the co-
workers are together.  However, we see that the reps working 
together for the longest times tend to have common sequences of 
jobs. For comparison, among all 3 million pairs, the job lists 
repeat an average of 40.72 times. 

Table 1. Average number of times a job sequence occurs 
among all pairs of reps.   

# reps in tribes Ranking 

578 1600 6066 26,152 

PROB 1.06 1.07 1.21 1.51 
JOBS 1.16 1.35 2.05 4.31 
YEARS 315.73 194.05   87.07 224.78 

 

Figure 6, below, gives a sense of how diverse the resulting tribes 
are. It shows, for several cutoffs, the percentage overlap between 
the set of reps produced by PROB and the equal-size set produced 
by each other ranking. We see that the PROB variations, 
particularly PROB-NOTIME, give results fairly close to PROB. The 
rep sets created by JOBS are related but substantially different, 
while those of YEARS have almost no overlap.  



 
Figure 6. Percent overlap of rep set with that from PROB. 

5.2 Disclosure Scores 
As part of their oversight, NASD and other regulatory 
organizations require disclosures to be filed on reps for a variety 
of actions they commit and events that take place. These 
disclosures span categories such as customer complaints, 
bankruptcies, criminal charges, and regulatory actions; some are 
mundane and merely reflect administrative reporting 
requirements, while others represent serious breaches of trust. We 
can use these disclosures as assessments of past behavior or as 
predictors of future fraud risk. We compute a “disclosure score” 
for each rep as a weighted sum of their disclosures, where serious 
categories are weighted more highly (the weights were developed 
in consultation with NASD); in this system, the vast majority of 
reps are assigned a score of zero. 
When we examine the disclosure scores of reps in tribes, we find 
that they score well above average, and that the scores of reps at 
the top of the rankings are higher than those lower down. Figure 7 
displays the average disclosure scores of reps under different 
ranking systems. The reps are ordered and placed into bins based 
on which cutoff causes the rep to be included in the set of tribes. 
The bin widths correspond to the number of reps in the bin. 
Within each bin, the four bars correspond to sets of reps produced 
by JOBS, PROB, PROB-TIMEBINS, and PROB-NOTIME. 

Results for YEARS are not displayed, as its scores are low: all fall 
below the higher dashed line. In fact, for the highest-ranked reps, 

the values are below the lower dashed line, and unlike with the 
other ranking systems, they rise as we move down the list of reps, 
reaching 2.4 for the largest set of reps. This may imply that the 
reps who have worked together for many years are least of all 
likely to commit fraud. 

One alternative explanation for the high disclosure scores seen 
among these top reps is that the reps who have held such 
sequences of jobs together may simply have longer careers than 
average, and so have accumulated more disclosures over the 
years. We tested this explanation by dividing all reps into groups 
based on the number of jobs they have held and the number of 
years they have spent in the industry. Given a top-ranked set of 
reps from the tribes, we replaced the disclosure score of each rep 
with the average score from the rep’s matched group, and 
recalculated the average for the set. If the matched disclosure 
scores were elevated, then our top-ranked reps would simply have 
long histories. In fact, the matched scores all give averages close 
to 2.8, the height of the dashed line, which means that length of 
career does not explain the high scores.  

5.3 Disclosure Score Correlation within 
Tribes 
If the tribes are of good quality and the conjecture is correct that 
reps at high risk of disclosures often move in tribes, then we 
would expect each tribe’s disclosure scores to be homogenous. 
That is, disclosure scores of individuals within a tribe would be 
correlated: some tribes would have multiple members with high 
scores, while other tribes would have low scores. Judging tribes 
by the properties of their members’ disclosure scores is not ideal, 
since the outcome depends on that second conjecture. In addition, 
since the frequency of disclosures is very low, under this lens only 
high-risk tribes look conclusively like high-quality tribes; low-risk 
tribes are hard to distinguish from random sets of reps. Finally, 
note the potential problem of incomplete information: reps that 
appear low-risk compared to their tribe-mates might just have 
evaded detection. It is precisely these individuals that the NASD 
may be interested in investigating in the future. 

We performed several experiments to test whether the tribes are 
homogenous with respect to disclosure scores. First, we examined 
individual pairs of reps, using a chi-square test to assess whether 
reps with positive disclosure scores pair with others with positive 
scores more often than expected at random. If we used all the 

Figure 7. Disclosure scores of the top-ranked reps.  Bar 
widths reflect the number of reps in each set. 



pairs that formed tribes, then reps in large components would be 
represented more than once; to avoid this, we only performed this 
test on the tribes of size 2. Since the rankings are all significant at 
the p ≤ 10-7 level, we compared them using the phi-square 
statistic, which is chi-square normalized to have a maximum value 
of 1. By this measure, all five rankings are more or less equally 
significant, as shown at the top of Figure 8. 

 
Figure 8. Comparison of tribe homogeneity  

using cutoff criterion of 1600 reps. 
Next, we set up a prediction task with the tribes: we tried to 
predict the disclosure score of each rep. For each target rep, we 
took the other reps in the same tribe, averaged their disclosure 
scores, and used this average as the predicted value. We can 
compute an AUC (area under the ROC curve) for these 
predictions if the classification task is binary. The AUC values 
shown are for the task “is the rep’s score higher than the average 
for this set?” By this measure, JOBS comes out a little more 
correlated than PROB-TIMEBINS, followed by the other PROB 
rankings, and YEARS trails. 

5.4 Geographic Movement 
The final indirect measure we use is the postal codes of the 
branches. If groups of reps move geographically, particularly 
large distances, this suggests they are staying together 
intentionally. Reps participating in the natural patterns of branch 
changes are less likely to move to far-off places together. We use 
the five-digit zip codes associated with most branches as a way to 
estimate geographic movement. The first digit designates a broad 
region of the United States, and the first three correspond to a 
particular large city or local region. Counting the number of 
unique one-digit or three-digit zip code prefixes associated with a 
rep pair’s list of shared branches gives an idea of the geographic 
mobility of the pair. As with disclosure scores, since we expect 
many high-quality tribes will not have geographic movement, this 
measure can only be used to evaluate tribes in the aggregate. 

Figure 9 displays information about geographic movement. For 
each pair in the set, we calculated how many unique one-digit and 
three-digit zip codes are covered by the shared jobs, as well as 
how many shared jobs there are with zip code information (96% 
of the branches have zip codes available). The values shown are 
the averages over the distinct shared job lists among the pairs. 
The PROB rankings show the greatest mobility when we look at the 
number of zip codes covered. This is more surprising when we 
consider that the pairs in JOBS have a greater number of shared 

jobs, yet move less geographically. Pairs in the YEARS ranking 
move least of all, even less than the average among the 3 million 
scored pairs,  which means that long-term co-workers tend to 
settle down. These long-term YEARS tribes—judging from their 
low disclosure scores, low overlap with the others, and low 
movement—do not seem to be the type of tribes we are looking 
for. 

 
Figure 9. Comparison of geographic mobility using cutoff 

criterion of 1600 reps.  For the distinct job sequences among 
each ranking’s pairs, bars show average numbers of branches 

and zip code prefixes. 

5.5 Discussion 
To sum up what we have seen, the rankings JOBS, PROB, PROB-
TIMEBINS, and PROB-NOTIME create tribes whose reps have higher 
disclosure scores, on average, than random (Section 5.2). Reps 
with high (or non-zero) disclosure scores are associated in tribes 
with other such reps under these rankings. At the cutoffs giving 
1600 reps, PROB-TIMEBINS has a higher phi-square than the others, 
whereas JOBS gives the highest AUC; these results vary at other 
cutoffs, with phi-square remaining highest for either PROB-
TIMEBINS or JOBS, and the highest AUC traded among JOBS and all 
the PROB–based models (Section 5.3). The PROB models create 
tribes that cross more zip codes among their shared jobs, even 
though the reps in JOBS have a higher number of shared jobs 
(Section 5.4). The PROB models produce more individual pairs in 
tribes, while JOBS and YEARS produce larger connected 
components as tribes (Section 5.1). 

The fact that the JOBS and PROB models perform comparably at 
various cutoffs, yet pick different sets of reps, suggests that there 
is room for improvement by combining the best of both systems. 
Of the tribes ranked highly by JOBS but not PROB, some, on 
inspection, appear to be just the types we hoped to avoid: pairs of 
reps taking a large number of very common transitions together. 
Others look like good tribes, and it appears PROB may miss them 
because of poor probability estimates at small branches. When 
both reps at a two-person branch move to the same new job, it is 
impossible to tell whether they moved together because their firm 
was bought, or because they wanted to stay together. The PROB 
model assumes the former, calculating the move as 100% likely to 
occur by chance, but this may not be the best policy. More 
generally, the PROB model seems to favor large firms, either 
because the probability estimates are more stable there, or perhaps 
because it is possible to create smaller transition probabilities 
from larger firms. We have not yet succeeded in correcting for 



this property, and the conclusion might be that the model is 
simply better suited for situations with large branches. 

Qualitatively, many of the tribes look convincing when the reps’ 
job histories are displayed together. It is a compelling feature that 
transition dates often coincide closely, even though the model did 
not use them. 

 
Figure 10.  Example tribe ranked highly by PROB but not by 

JOBS. Nodes indicate branches and their sizes. Arrows leading 
into a node show the starting dates of employment and the 
transition probabilities. Solid lines are moves executed by 

both reps in the pair; dashed and dotted lines are moves by 
one member only. Firm names are fictitious.  

 
Figure 11. Example tribe ranked highly by JOBS but not by 

PROB. Firm names are fictitious. 



As examples, Figures 10 and 11 display the career histories of two 
potential tribes.  Each of these tribes consists of a single pair of 
reps. The pair in Figure 10 was scored by PROB as highly 
significant, while that in Figure 11, even though it has a long 
history together and was ranked highly by JOBS, appears to be 
following typical patterns; it was scored as not significant by 
PROB. As it turns out, the reps from the significant pair have 
disclosure scores of 18 and 24, primarily since in April 1996 they 
were both fired (disclosures show an Internal Review and a 
Termination for each).  One of the reps from the non-significant 
pair has no disclosures, while the other was fired in 1997 for 
“diversion of profitable trades to personal,” for which they 
received a score of 12.  

6. RELATED WORK 
Our task of identifying small, anomalously similar groups is novel 
within relational knowledge discovery but has analogs in other 
fields. Within the analysis of complex relational and social 
networks, it is common to cluster the graph or otherwise infer 
hidden group structure [17], [12], but usually the aim is to find 
large-scale communities, such as among webpages [8], employees 
in a single organization [22], or bottlenose dolphins [15]. In 
addition, these algorithms are typically designed for static or time-
collapsed networks, whereas the temporal aspect is important for 
us. 

In time series analysis, there is research within the database 
community on efficiently finding identical or similar sequences 
[1], and on constructing flexible definitions of similarity [5]. 
Econometrics has a related concept called cointegration: two time 
series X and Y (e.g., of stock prices) may be cointegrated if Xt is 
useful for predicting Yt+1 [10]. However, in these fields, time 
series are traditionally numerical. Furthermore, in our task we 
wish to find sequences that are not just similar, but also 
anomalous. 

Anomaly detection, often applied to the security task of intrusion 
detection, does highlight unusual time-sequence patterns against a 
background of normal activity, often learning a background model 
from the data [21]. A recent paper by Eskin [6] offers a clear 
formulation that treats the data as a mixture model of normal with 
anomalous sequences, a technique that could be useful for scoring 
pairs in our scenario, although we would still need to specify the 
form of the normal model as we do here. For anomaly detection in 
relational data, Lin and Chalupsky [14] offer a measure of path 
rarity that can be used to find the closest match to a given 
individual, although it does not compare one set of individuals to 
another. 

In modeling dynamic networks, a few papers offer related ideas. 
Magdon-Isamil et al. [14], searching for hidden groups, propose a 
Markov chain model of how individuals’ group affiliations change 
over time, a model general enough to allow multiple simultaneous 
memberships along with individual preferences. This framework 
could potentially make our probabilistic model cleaner, although 
it would need to be heavily constrained to reduce the number of 
parameters required. Lahiri and Berger-Wolf [13] introduce an 
algorithm for dynamic graphs that predicts future interactions 
(edges) at each time step based on patterns of interactions at 
previous time steps.  With an appropriate mapping of our branch 
transitions into their interactions, this approach might provide a 
different way of modeling the background transition patterns we 
try to capture. 

Semi-Markov models are a standard type of stochastic process for 
modeling transitions with timing information [23].  They contain 
parameters not only for transition probabilities between states, but 
also for durations of stay in each state.  While our models 
neglected durations (in order to focus on simultaneity of 
affiliations), semi-Markov models would provide a natural, richer 
way to model the transition processes with respect to individual 
reps. 

The caravan identification task mentioned in the introduction has 
a realistic motivation from the military: Burns et al. [3] describe a 
system that uses airborne video surveillance data to detect 
convoys moving on the ground.  The image data they use, 
however, is not nearly clear enough to make statistical modeling 
feasible. 

Most intriguingly, animal biologists have long faced something 
like the tribe-finding task: given observations of animals in 
groups, taken at different time points, they ask which pairs of 
animals are highly associated. (These “association patterns” are 
used as the links for animal social networks [15], [13].) The most 
common association measure, the Half-Weight Index [4], is a 
simple function of the number of times the animals are seen 
together vs. apart, but Bejder et al. propose a more sophisticated 
network randomization test [2]. We are investigating this 
literature as part of ongoing work, and note a few aspects here. 
First, the associations are impossible to verify directly, but there is 
work validating the methods through simulation. Second, the 
models ignore time, which seems reasonable in that domain given 
that each distinct group is only observed once. 

7. CONCLUSIONS AND EXTENSIONS 
One of the strengths of this work is that, beginning with no 
explicit knowledge of this industry, we can discover, model, and 
factor out typical job transitions, even though in real life these are 
caused by a combination of geography, career tracks, and other 
factors. Moving forward, we may extend our model by 
incorporating external or domain-specific information. For 
example, we could consider relationships between reps who work 
in the same city but not at the same branch, and we could better 
handle some odd cases of reps with many simultaneous jobs given 
a better understanding of the industry and the data sources. 

In this work, we had access to a complete history of employments 
and disclosures so far. In practical use, tribe identification will be 
more of an ongoing process, a situation we need to consider; it 
will be more difficult to recognize tribes when they have shared 
only a few jobs. 

The most interesting aspect of our formulation, compared to 
related work, is our accounting for simultaneous jobs and different 
paths between the same jobs. We needed to allow for multiple 
affiliations starting and ending at arbitrary times, yet our model 
does not describe the network’s changes day by day; instead, we 
observed certain discrete events (job transitions, and co-workers 
intersecting at a job) as time moved forward. 

It may be worthwhile to incorporate more timing information, 
such as job durations, into our model, or other properties like the 
lengths of reps’ non-intersecting careers. In the direction of 
simplifying, we plan to explore the time-oblivious version of the 
model (PROB-NOTIME), to see how well it can be applied to other 
types of tasks. In addition, we may incorporate a clustering or 
other dimensionality-reduction technique for the branches, either 
as an initial step in order to produce fewer but more robust 



transition probabilities, or afterwards to further analyze the 
resulting transition graph. More immediately, we are investigating 
adjustments that may improve the model’s behavior with small 
branches. Finally, we hope to experiment with other domains and 
data sets. 

8. ACKNOWLEDGMENTS 
The National Association of Securities Dealers provided generous 
research support for this work, and worked with us to scope and 
further refine this analysis. In particular, Henry Goldberg and 
John Komoroske provided invaluable assistance. We also thank 
Bret Aarden and Michael Cuthbert for helpful comments in the 
course of this project, Cindy Loiselle for her careful editing, and 
Marc Maier for reminding us about zebras. This research is 
supported by the Central Intelligence Agency, the National 
Security Agency and National Science Foundation under NSF 
grant #IIS-0326249. The U.S. Government is authorized to 
reproduce and distribute reprints for governmental purposes 
notwithstanding any copyright notation hereon. The views and 
conclusions contained herein are those of the authors and should 
not be interpreted as necessarily representing the official policies 
or endorsements either expressed or implied, of the funding 
sources or the U.S. Government. 

9. REFERENCES 
[1] Agrawal, R., Lin, K. I., Sawhney, H. S., and Shim, K. Fast 

similarity search in the presence of noise, scaling, and 
translation in times-series databases. In Proc. 21st Int. Conf. 
on Very Large Data Bases (VLDB ‘95), 490-501. 

[2] Bejder, L., Fletcher, D., and Bräger, S. A method for testing 
association patterns of social animals. Animal Behaviour, 56, 
3 (Sept. 1998), 719-725. 

[3] Burns, J., Connolly, C., Thomere, J., and Wolverton, M. 
Event recognition in airborne motion imagery. In Capturing 
and Using Patterns for Evidence Detection—Papers from the 
AAAI Fall Symposium. AAAI Press, 2006. 

[4] Cairns, S. J. and Schwager, S. J. A comparison of association 
indices. Animal Behaviour, 35, 5 (Oct. 1987), 1454-1469. 

[5] Das, G., Gunopulos, D., and Mannila, H. Finding similar 
time series. Principles of Data Mining and Knowledge 
Discovery (PKDD '97), 88-100. 

[6] Eskin, E. Anomaly detection over noisy data using learned 
probability distributions. In Proc. 17th International Conf. on 
Machine Learning (ICML ’00), 255-262. 

[7] Fast, A., Friedland, L., Maier, M., Taylor, B., and Jensen, D. 
Data pre-processing for improved detection of securities 
fraud in relational domains. In Proc. 13th ACM Int. Conf. on 
Knowledge Discovery and Data Mining (KDD ’07). 

[8] Gibson, D., Kleinberg, J., Raghavan, P. Inferring Web 
communities from link topology. In Proc. 9th ACM 
Conference on Hypertext and Hypermedia, 1998. 

[9] Goldberg, H. G. and Senator, T. E. Restructuring databases 
for knowledge discovery by consolidation and link 
formation. In Proc. 1st ACM Int. Conf. on Knowledge 
Discovery and Data Mining (KDD ’95), 136-141. 

[10] Granger, C. W. J. Some properties of time series data and 
their use in econometric model specification. J. 
Econometrics 16 (1981), 121-130. 

[11] Jensen, D. and Neville, J. Data mining in social networks. In 
Dynamic Social Network Modeling and Analysis: Workshop 
Summary and Papers (National Academy of Sciences, 
November 7-9, 2002). National Academies Press, 
Washington, DC, 2003, 287-302. 

[12] Kubica, J., Moore, A., Schneider, J., and Yang, Y. Stochastic 
link and group detection. In Proc. 18th Nat. Conf. on 
Artificial Intelligence (AAAI ’02), 798-804. 

[13] Lahiri, M. and Berger-Wolf, T. Y. Structure prediction in 
temporal networks using frequent subgraphs. IEEE 
Symposium on Computational Intelligence and Data Mining 
(CIDM ‘07) (April, 2007, Honolulu, Hawaii). 

[14] Lin, S. and Chalupsky, H. Unsupervised link discovery in 
multi-relational data via rarity analysis. Third IEEE 
International Conference on Data Mining (ICDM ’03), 171. 

[15] Lusseau, D. and Newman, M. E. J. Identifying the role that 
individual animals play in their social network. Proc. R. Soc. 
London B (Suppl.) 271 (2004), S477-S481. 

[16] Magdon-Ismail , M., Goldberg, M., Wallace, W., and 
Siebecker, D. Locating hidden groups in communication 
networks using hidden Markov models. In Proc. NSF/NIJ 
Symposium on Intelligence and Security Informatics (June 
2003), 126-137. 

[17] Neville, J. and Jensen, D. Leveraging relational 
autocorrelation with latent group models. In Proc. 5th IEEE 
Int. Conf. on Data Mining (ICDM ’05), 322-329. 

[18] Neville, J., Şimşek, Ö., and Jensen, D. Autocorrelation and 
relational learning: Challenges and opportunities. In Proc. 
Workshop on Statistical Relational Learning, 21st Int. Conf. 
on Machine Learning (2004).  

[19] Neville, J., Şimşek, Ö., Jensen, D., Komoroske, J., Palmer, 
K., and Goldberg, H. Using relational knowledge discovery 
to prevent securities fraud. In Proc. 11th ACM Int. Conf. on 
Knowledge Discovery and Data Mining (KDD ’05). 

[20] Salton, G. and Buckley, C. Weighting approaches in 
automatic text retrieval. Information Processing and 
Management, 24, 5 (1988), 513–523.  

[21] Teng, H. S. and Chen, K. Adaptive real-time anomaly 
detection using inductively generated sequential patterns. 
IEEE Symposium on Security and Privacy (1990), 278. 

[22] Tyler, J. R., Wilkinson, D. M., and Huberman, B. A. Email 
as spectroscopy: Automated discovery of community 
structure within organizations. Communities and 
Technologies. Kluwer, B. V., Deventer, Netherlands, 2003, 
81-96. 

[23] Weiss, E. N., Cohen, M. A., and Hershey, J. C. An iterative 
estimation and validation procedure for specification of 
semi-Markov models with application to hospital patient 
flow. Operations Research, 30, 6 (Nov. - Dec. 1982), 1082-
1104. 

 


