
Joke Retrieval: Recognizing the Same Joke Told
Differently

Lisa Friedland and James Allan
lfriedl@cs.umass.edu, allan@cs.umass.edu

Department of Computer Science, University of Massachusetts Amherst
140 Governors Drive, Amherst, MA 01003-9264

ABSTRACT
In a corpus of jokes, a human might judge two documents to be
the “same joke” even if characters, locations, and other details are
varied. A given joke could be retold with an entirely different
vocabulary while still maintaining its identity. Since most
retrieval systems consider documents to be related only when
their word content is similar, we propose joke retrieval as a
domain where standard language models may fail. Other
meaning-centric domains include logic puzzles, proverbs and
recipes; in such domains, new techniques may be required to
enable us to search effectively. For jokes, a necessary component
of any retrieval system will be the ability to identify the “same
joke,” so we examine this task in both ranking and classification
settings. We exploit the structure of jokes to develop two domain-
specific alternatives to the “bag of words” document model. In
one, only the punch lines, or final sentences, are compared; in the
second, certain categories of words (e.g., professions and
countries) are tagged and treated as interchangeable. Each
technique works well for certain jokes. By combining the methods
using machine learning, we create a hybrid that achieves higher
performance than any individual approach.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing

General Terms
Algorithms

Keywords
Humor, document similarity, domain-specific retrieval

1. INTRODUCTION
Humor is famously difficult for machines to comprehend. It
brings into play ambiguities, implications, and exaggerations, all
in the service of violating expectations—which requires one to
have expectations in the first place. To believe Hollywood writers,
humor will be the last skill for artificial intelligences to acquire.

To believe linguistic and computational researchers, jokes are a
domain where “the question of semantics can no longer be
avoided” [25]; and worse, they contain “language that requires
deep conceptual knowledge about the details of human
experience” [5].

One concept that humor brings into focus is an alternative notion
of document similarity. Even more than is true for the news
stories and other informative documents typically used in
information retrieval, jokes can be related without having many
words in common. What we would consider “one joke” can be
retold in vastly different ways.1 For instance, Figure 1 shows a
joke, and Figure 2 outlines how its elements change in other
documents in our collection.

Characters can change, the setting can change; it is difficult to
describe, at the word level, what it is that stays constant in a
joke’s structure or meaning. One way to evoke this challenge is to
try to formulate a search query for a joke—for instance, to
determine if any version of it is present in a given corpus.
(Perhaps we hazily recall the joke but want to see a full version
before retelling it.) With the example shown in Figure 1, we might
begin with “priest rabbi accident wine,” but then pause, realizing
the joke could really be about any two people, so it would be
better to remove them from the query. Next, “accident” could be
“crash” or “collision,” and “wine” could be “whiskey” or
“champagne.” What is left? Perhaps a few variations on “drink
police accident,” a query which is less precise and would still fail
to retrieve the version in Figure 3. The problems here are not just
synonymy or paraphrasing, but also the difficulties of knowing
which aspects of a joke are likely to vary and capturing the wide
range of possible alternatives.

Jokes are just one of many domains in which this structural, or
logical, document similarity can frustrate searches. Difficulty
formulating queries to describe a particular meaning also arises
when searching for famous quotations. When one is asked, “Can
you find that quote where Einstein said …,” sometimes all one
can do is verify that Einstein didn’t say it, and that in fact no one
said exactly that phrase, even though the quote we wanted is
likely out there. Song lyrics also have this property: one must
remember them verbatim to find them on the web. A similar
domain is that of proverbs: a given saying may be expressed in
numerous ways, particularly across cultures, and it would be
interesting to find versions of the same message.

1 See, for example, the recent documentary The Aristocrats,

which explores the variations of a single joke [27].

© ACM, 2008. This is the author's version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution.
This is a minor revision of the work published in Proceedings of the 17th
ACM Conference on Information and Knowledge Management,
http://doi.acm.org/10.1145/1458082.1458199

A genre closely related to jokes is logic and math puzzles: having
solved how to use a five-gallon bucket and a three-gallon bucket
to measure out exactly four gallons of water [26] shows one
immediately, for example, how to use a 100 mL test tube and a 60
mL test tube to measure exactly 80 mL of hydrochloric acid. In
fact, probably every grade school “story problem” fits into a small
number of templates; it is easy to generate new problems of a
given type (see [28]), but fortunately for teachers, no reverse tool
(automatic recognition and solution of homework exercises) is yet
known to us. Unfortunately for researchers, neither is there yet a
system to refer one to “the same research problem” that may have
been studied using different terminology in another field—
although a few projects have been aimed at this idea [18].

One final example where structure can matter more than word
content is cooking. Websites with recipes can suggest other dishes
that contain “chicken” or “green beans.” But in the process of
learning to cook, it often takes seeing a few examples before we
begin to recognize a general technique, e.g., that one can roast
pork with peppers using the same steps and the same group of
seasonings as for the chicken with green beans. Retrieving other
recipes with the same structure would make it easier for novices
to learn which aspects one can vary.

In all these domains, we expect search to be difficult because the
user cares less about the word content of a document—the
information captured by standard retrieval models—and more
about the logical relationships among its entities. In this paper, we
limit ourselves to studying jokes. Specifically, we focus on
recognizing whether two documents are “the same joke,” or as we
will term it, whether they “match” or belong to the same “joke
cluster.” This functionality would be a critical component of a
joke search engine that incorporates meaning. In response to a
query, a results page could list several clusters; for each cluster, it
would display one joke and a link to “other versions of this.”
Creating that list of other versions is the task we address here.

To outline what follows in the paper: Sections 3 and 4 introduce
our data and models, including several document models specific
to jokes. In Section 5, we consider the task of pairwise
classification: given two jokes, decide if they match. Next, in
Section 6 we move to a ranking setting, which is closer to our
eventual goal: given one joke, retrieve a ranked list of matches.
Finally, in Section 6.3 we improve the ranking function by
incorporating a classifier. We begin now by situating this project
within the context of other research on humor and on domain-
specific retrieval; other related work is deferred to Section 8.

2. PREVIOUS WORK
2.1 Humor Studies
There is a small but growing body of research in computational
humor. This area typically encompasses two tasks: distinguishing
humorous from non-humorous documents, and generating humor.
Binsted et al. collects the work of several groups in this field [5].
Some recognition tasks include using text classification to
distinguish humorous one-liners from other sentences like
headlines or proverbs [14], or recognizing pun-like jokes [19].
One early article with a spirit similar to ours critiques IR
techniques as relying too heavily on the specific words in a
document; it proposes an architecture for neural networks that
would infer the implied context of a sentence and then recognize
jokes by the incongruities they contain [25]. Though only a toy

Figure 1. One version of a joke.

A Rabbi and a Priest are driving one day and, by a freak
accident, have a head-on collision with tremendous force.
Both cars are totally demolished, but amazingly, neither of the
clerics has a scratch on him. After they crawl out of their cars,
the rabbi sees the priestʼs collar and says, “So youʼre a priest.
Iʼm a rabbi. Just look at our cars. There is nothing left, yet we
are here, unhurt. This must be a sign from God!” Pointing to
the sky, he continues, “God must have meant that we should
meet and share our lives in peace and friendship for the rest
of our days on earth.” The priest replies, “I agree with you
completely. This must surely be a sign from God!” The rabbi
is looking at his car and exclaims, “And look at this! Hereʼs
another miracle! My car is completely demolished, but this
bottle of Mogen David wine did not break. Surely, God wants
us to drink this wine and to celebrate our good fortune.” The
priest nods in agreement. The rabbi hands the bottle to the
priest, who drinks half the bottle and hands the bottle back to
the rabbi. The rabbi takes the bottle and immediately puts the
cap on, then hands it back to the priest. The priest, baffled,
asks, “Arenʼt you having any, Rabbi?” The rabbi replies,
“Nah... I think Iʼll wait for the police.”

Figure 2. Variations of the same joke (excerpts).

An Irish priest and a Rabbi get into a car accident … The
priest asks him, “Are you all right, Rabbi?” The Rabbi
responds, “Just a little shaken.” The priest pulls a flask of
whiskey from his coat and says, “Here, drink some of this it
will calm your nerves.” … “Well, what are we going to tell the
police?” “Well,” the priest says, “I donʼt know what your aftʼ to
be tellinʼ them. But Iʼll be tellinʼ them I wasnʼt the one drinkinʼ.”

A woman and a man got into a really bad car accident. Both
cars are totaled …

Thereʼs a guy from ARMY driving from West Point to the
Meadowlands, a guy from the NAVY was driving from
Annapolis to the Meadowlands, and an Air Force guy whoʼs
driving from McGwire in South Jerz to the Meadowlands just
to watch the Jets. In the middle of the night with no other cars
on the road they hit each other and all cars go flying off in
different directions. … The Air Force guy says “Let me see
what else survived this wreck.” So he pops open his trunk
and finds a full unopened bottle of Jack Daniels. …

Figure 3. Fifth variation, with diverging vocabulary.

An English man and an Irish man are driving head on, at
night, on a twisty, dark road. Both are driving too fast for the
conditions and collide on a sharp bend in the road. To the
amazement of both, they are unscathed, though their cars are
both destroyed. In celebration of their luck, both agree to put
aside their dislike for the other from that moment on. At this
point, the Irish man goes to the boot and fetches a 12 year
old bottle of Jameson whiskey. He hands the bottle to the
English man, whom exclaims, “may the English and the Irish
live together forever, in peace, and harmony.” The English
man then tips the bottle and lashes half of it down. Still
flabbergasted over the whole thing, he goes to hand the
bottle to the Irish man, whom replies: “no tanks, Iʼll just wait till
the Garda get here!”

system was implemented, the authors do discuss joke retrieval as
a domain where the query words may not be found in a document,
and where, they argue, one must then include semantics in search.
As for humor generation, there are systems that generate pun-
based riddles or humorous acronyms [5]; such systems begin with
a specific humorous template and automatically instantiate it.
Other applications include inserting humor into emails or chatbots
as a means to improve human-computer interactions [5], [14].
Finally, there is a search engine for jokes called Jester, but it has
been created and studied exclusively as a recommender system
[7]. The models of humor that help computers recognize or
construct it could be valuable to anyone studying jokes, but none
of the above articles considers variations of a single joke, the
central idea of this paper.

Outside of computer science, humor research has a long history in
fields like linguistics, psychology and philosophy. Mihalcea offers
a quick survey of this diverse work [13]; for more information,
see the International Society for Humor Studies
(http://www.hnu.edu/ishs) and its journal (e.g., [2]). The most
influential current theories are the Semantic Script-Based Theory
of Humor [16] and its extension, the General Theory of Verbal
Humor (GTVH) [2]. Both describe humor as resulting from two
contrasting interpretations of the same text. GTVH specifies six
properties of a humorous text, from lower-level aspects, like the
style and the target (i.e., butt) of a joke, to higher-level aspects,
like the contrasting themes and logical mechanism by which the
humor unfolds. A recent book by Ritchie offers a strong critique
of these and related theories as being poor in testable hypotheses,
if rich in intuition [17]. Drawing on methodologies from artificial
intelligence and generative linguistics, Ritchie lays out properties
a formal model of humor would need to satisfy, and as a first step
towards that goal, he begins a bottom-up, descriptive analysis of
certain types of texts, among them puns.

In a chapter on joke identity and similarity, Ritchie discusses the
“same joke” idea, that certain variations preserve a joke's core
identity [17]. This concept was earlier suggested by Hofstadter
and Gabor, who described how a given “ur-joke” or “skeleton”
can underlie many different jokes [8]. Their example “ur-jokes”
permit quite a wide variety of instantiations, as long as the key
joke entities and their logical relationships are present. Ritchie
points out that one can view jokes either as consisting of a central
core with variations, or as having degrees of similarity to a great
range of jokes, across several axes of variation. The latter view
fits in with GTVH, in which the six properties are said to form a
strict order. Changing the joke's target, for example, would
purportedly create a variation farther from the original than if one
changed the joke's narrative style. In the present work, we use an
ad hoc rule to describe the jokes we consider to be the same, but
the situation is not clear-cut (see Section 3).

This project is unusual for combining humor studies with
information retrieval. In the course of building good statistical
models for jokes—in particular, models to identify sets of jokes
having the same meaning—we may expect to find new insights
about jokes themselves. In addition, for a computational area
whose practical utility has been doubted [17], a jokes search
engine may be a good motivating application. A search engine
that could retrieve joke clusters in response to queries containing
possibly different words would enable users to effectively search
through jokes, something not currently possible. Such a system
would demand joke recognition for its spidering step, as well as

the identification of matching jokes, our current goal, for
organizing the results of a query.

2.2 Domain-Specific Retrieval
A search engine for jokes is an example of a domain-specific
retrieval system. Previous authors have discussed the advantages
of specialized systems for performing complex, domain-specific
queries on structured data gathered from the web—for instance,
on collections of research papers, movie show times, or airplane
flights [9], [12]. Certainly the domains mentioned in the
introduction (quotations, puzzles, etc.) could all be easier to
navigate if they had specialized search tools. In the articles above,
the main challenges of building such systems consisted of
efficiently spidering the web and recognizing informative
documents (a task we sidestep by using existing collections), and
of correctly extracting the important fields from the text. Our
situation is different: we do not know what information to extract.
As noted above, there is no working model of what matters for a
joke's identity; there is not even a good intuitive model. So, we
shall begin by using language modeling, which after all, performs
well for that very complicated text domain of natural language.
We also build models that capture structures we expect to be
important to a joke's identity: namely, the punch line, and the
(abstractions of) entities that appear in the joke.

The approaches and task definitions we use here may inform work
in other domains where the word content can vary widely without
affecting the meaning. In particular, the notion of abstracting the
entities, along with any future techniques for incorporating
semantics (to the extent this turns out to be necessary), will be
applicable to such domains. In Section 8 we discuss other
technical approaches that could potentially be brought to bear on
joke retrieval and these related tasks.

3. CORPUS
The corpus consists of approximately 11,000 jokes. These were
downloaded from 13 joke archive sites on the web. It was
important for the corpus to contain multiple versions of a number
of jokes; to increase the odds of such repetitions, several
specialized collections were included, such as music jokes and
profession jokes, that seemed likely to include repeats.

A large number of the documents contained humor outside the
scope of the jokes we wanted to study. We manually removed
items like one-liners (which included “yo mama” jokes), quotes,
funny but true stories, sarcastic commentaries, “top ten ways
to …,” and lists. The remainder consists of things like narrative
stories (like in Figure 1), light bulb jokes, and question/answer
jokes (e.g., “Q: What do you call 5000 dead lawyers at the bottom
of the ocean? A: A good start!” or “Q: What do you call a snail on
a ship? A: A snailor!”). Duplicate and near-duplicate documents
(e.g., those that became identical after stemming and stopping)
were also removed.

Sixty clusters of jokes were labeled manually. This was done by
creatively constructing queries to find matches for particular
jokes. (For humans, this was not difficult, but recall was
imperfect: in several cases, the retrieval systems found matches
that the authors had missed.) Most jokes do not appear to have
matches, but the corpus certainly contains more clusters than
those we labeled. The clusters range in size from 2 to 13 jokes,
and they include a total of 217 documents.

Judging whether two jokes match can be subjective. As a rule of
thumb, we labeled them as matching if one might easily say, “I
know that joke, except in my version [something varies].”
However, there are many ambiguities. For instance, consider light
bulb jokes. They might be characterized as a single cluster, if only
there were not thousands of them: “How many [people of some
type] does it take to change light bulb? [More than one], because
[they have some particular property].” At the same time, a rewrite
into a non-light bulb joke poking fun at the same property—a
transformation that would otherwise seem minor—might be seen
as changing the joke, since the light bulb genre is such a
recognizable, fixed form. For these reasons, we avoided labeling
light bulb jokes and other “difficult” jokes altogether.

In the corpus as a whole, almost half the jokes are just two
sentences long. Those jokes we labeled tended to be longer
stories, averaging about 12 sentences. This was probably a bias in
labeling, and it could imply that the results on the short jokes will
be those most representative of future performance. However, it is
also possible that the same bias—perhaps, that longer jokes were
more interesting to look for, and that shorter jokes, often word
puns like the “snailor,” were harder to vary—would affect the
queries of future users.

4. METHODS
We use a language modeling approach. The document models and
similarity measures described next are employed in both the
classification and ranking tasks. As noted earlier, we use a
standard statistical language model as a baseline [11]. Then, we
implement variations that specially treat those structures we
expect to be important to a joke’s identity.

4.1 Document Models
4.1.1 Baseline
The baseline is a standard unigram (bag of words) model. With
this, each document is initially represented as a multinomial
probability distribution over its words. The probabilities are
estimated using maximum likelihood. That is, if word w occurs
tfw,d times in a document d having length Ld, then in the document
model Md,

!

P(w |Md)MLE =
tfw,d

Ld

 .

To avoid assigning any words probability zero, we use linear
interpolation smoothing to combine the above value with the
probability of the word in the general corpus:

!

P(w |M
d
) = "P(w |M

d
)
MLE

+ (1# ")P(w |M
c
)
MLE

.

We determine λ through a parameter sweep, performed separately
for each model and task. In the ranking setting, we find the value
λ = 0.4 to be optimal for all models; for classification, we find λ =
0.99 to be near-optimal for all models.

Throughout this paper, the query is also a document from our
collection. However, we do not need to smooth the query model,
so we just use the maximum likelihood value for a query q:

!

P(w |Mq) = P(w |Mq)MLE =
tfw,q

Lq

.

4.1.2 Punch Line
The first alternative to the baseline captures the intuition that the
ending of a joke is crucial to its identity and is likely to remain
constant despite the rest changing. For this punch line model, we
simply identify the last sentence and throw away everything
before it. In shortening the document, we are losing information;
however, we speculate that the final sentence contains the "key
concepts" for the joke, which will help target the search [3]. The
same equations above are used, but every document in the corpus
is truncated.

4.1.3 Annotations
This approach is motivated by the idea that if the characters,
setting and other details can change in a joke, then perhaps we
could recognize those changeable elements and replace them with
abstractions. For instance, at an abstract level, the joke from the
introduction might read like this: “A person and a person were
traveling in vehicles that collided.” We create such a
representation by recognizing certain words and “annotating”
them with their category. Using this representation, our judgments
of joke similarity might improve for two reasons. First, the
annotated words will now match: among jokes in the same cluster,
these words may correctly match where the original text did not.
Second, the un-annotated words will be informative when
examined separately from the annotated words. This set will
include both generic words and unusual words; we hope it will be
distinctive within each joke cluster.

The following text shows a joke from our corpus and its annotated
version (after stopping and stemming):

“Q: What's the difference between a dead snake in the road and a
dead lawyer in the road?

A: There are skid marks in front of the snake.”

“differ dead #animal[snake] #location[road] dead #person[lawyer]
#location[road] skid mark front #animal[snake]”

As one might imagine, when using these annotations (and
ignoring the words inside the brackets), the above joke matches
identically to another that begins: “Q: What's the difference
between a dead dog in the road and a dead politician …”

To implement the annotations, there are two aspects to decide: (a)
how to annotate the text, and (b) how to treat the annotated text.
For the first question, we create word lists for ten categories (see
Table 1) using the web as well as gazetteers included with the
information extraction tool GATE (http://gate.ac.uk). During
preprocessing, any document word that matches a list word is
tagged (respecting some order of precedence for the lists). This is
a coarse method and yields obvious markup errors, for example
with homographs and irregular plurals, but such problems are
present already in the bag of words model. It would also have
been possible to create the word lists using WordNet. Such an
approach would be easier to generalize to other domains and other
categories. But the manually constructed lists are sufficient for a
first pass; in addition, they are easy to modify, which lets us
correct the more salient markup errors.

Table 1. Categories of annotations.

animal number
color organization
currency person
location time/date
music vehicle

Once the documents are annotated, there are a number of options
for how to treat the new tokens. A model could be used that treats
“#animal[dog]” as similar but not identical to “#animal[snake].”
This would be similar to a translation model, as we will discuss in
Section 8. Instead, we choose to treat all “#animal[]” tokens as
identical. A translation model giving different probabilities for
each substitution would behave midway between treating the
tokens as distinct, as in the baseline, and treating them as
identical, so we place the annotations model at that second
extreme.

Formally, for a plain, un-annotated word under the annotations
model, P(w|Md)MLE is as before. For a word w annotated from
word list A, the probability becomes

!

P(w |Md)MLE =
tfa,d

Lda"A

.

4.1.4 Combination Models
Once the documents have been annotated and subdivided into
punch line and non-punch line portions, it is easy to invent
additional document models that use this same information
differently. For instance, one can use only the punch line, but use
the annotations model within it. Or rather than using the annotated
tokens within the bag of words, one could simply delete them, in
the spirit of treating them like stop words; after all, almost every
joke probably contains a “#person.” In the realm of possible but
probably unhelpful models, one can treat a document as a bag of
just two types of tokens: punch line and non-punch line words; or,
annotated and non-annotated words. Or, to test the conjecture that
only some annotation categories are useful, one can choose to use
some types of labels but not others, for instance treating all
“#animal” tokens as identical, but ignoring “#location” tags and
reverting these to the original words.

In our code base, we provide a flexible syntax for specifying
document models along the above lines, and we create 108 such
variations. The scores from these models are given as inputs to the
machine learning classifier introduced in Section 5.3.

4.2 Similarity/Ranking Measures
To measure the similarity of a query to a document, we use the
Kullback-Leibler (KL) divergence of the query and document
models. This measure is used to rank the documents during
retrieval (Section 6) as well as to evaluate the similarity of two
documents (Section 5). KL divergence is a natural (though
asymmetric) measure of the distance between two probability
distributions; it is zero when the distributions are equal and
positive otherwise. When the query is held constant, as in the
retrieval setting, KL divergence is rank-equivalent to cross
entropy, H(p,q), as shown here [10]:

!

KL(Md ||Mq) = P(w |Mq)log
P(w |Mq)

P(w |Md)w"q

#

= P(w |Mq)logP(w |Mq)
w"q

#

$ P(w |Mq)logP(w |Md)
w"q

#

= $H(q) + H(p,q)

=
rank

H(p,q)

Often, the summation in the formula is taken over all words in the
vocabulary. Since our query model is not smoothed, P(w|Mq) (and
thus the whole term) is zero for words outside the query.

The function above allows different weights (probabilities) for the
query terms, as well as for the document terms. It is necessary to
use a function with this property since in our framework the query
is always a full document, not just a few distinct words. When the
query weights are all equal, cross entropy reduces to standard
query likelihood.

5. CLASSIFICATION
In the classification task, the system is given two documents, and
it must determine whether they are variations of the same joke.
We set this up as for a machine learning task—creating separate
training and test sets and using cross validation—even though
most models only “learn” a cutoff threshold. The training and test
sets contain positive and negative examples, the positives being
joke pairs that match, and the negatives being joke pairs that do
not match.

5.1 Training and Test Sets
The samples are divided into ten groups to allow ten-fold cross
validation. In order that the training and testing barrier be kept
intact, no joke cluster contributes examples to more than one
group. We also avoid letting any one large cluster dominate the
examples, sampling no more than 15 positives and 15 negatives
from any cluster.

For any cluster, the positive examples are drawn from all pairs of
jokes in the cluster. The negative examples have one joke in the
cluster and one outside it. If the joke from outside the cluster were
picked uniformly at random, the task would be unfairly easy; the
pair of jokes would not be at all similar. So instead, we sample
negatives so that they will be comparable in their ranks to the
positives. That is, for each positive pair, we use one joke as a
query, retrieve a ranked list of jokes, and record the rank (in that
list) of the second joke. By repeating this with every joke as the
query, we estimate a distribution of ranks of positives. Then, to
generate negatives, we take one joke from the cluster, retrieve a
ranked list of jokes, sample a desired rank from our distribution,
and pick a non-matching joke from at or near that rank. In this
way we create negative examples that are, in theory, difficult to
distinguish from the positives.

5.2 Symmetric Similarity
We described KL divergence above. However, when the example
at hand is a pair of documents a and b, with neither taking the role
of query, it is better to measure their similarity using a symmetric

score. We make the score symmetric by taking the average of both
directions, that is, using:
similarity = ½(KL(Ma || Mb) + KL(Mb || Ma)).

It would have been possible to use the symmetric cross entropy
instead. Since the values of the scores matter, not just the
rankings, we choose KL divergence because it has a minimum of
zero. For cross entropy, the minimum score (occurring for
perfectly matching documents) is the entropy of the query, which
varies by query.

5.3 Experiments
In total, we have approximately 600 data points, of which 58% are
negatives. During the training phase, the classifier computes the
similarity score for each pair, then it chooses a decision threshold
to maximize its accuracy—the number of correct predictions—on
the training data. We evaluate the accuracy for each fold of the
test data and then compute an average across the folds. Table 2
shows the accuracies achieved by the three main document
models described above.

Table 2. Classification accuracy of individual models.

Document model Accuracy

Baseline 0.749

Annotations 0.773

Punch line 0.801

The first things to observe are that the accuracies are fairly high,
and that the models that use joke structures have some advantage
over the baseline. Also, there is diversity among the models;
Table 3 shows how each model has some examples that only it
predicts correctly. We further see that the models are erring on the
side of caution by not recognizing positives when they appear.

Table 3. Diversity among classification models.

Document
model

Number of pairs
only this model
gets right

Accuracy
on
negatives

Accuracy
on
positives

Baseline 4 0.91 0.52

Annotations 13 0.91 0.59

Punch line 56 0.90 0.66

To take advantage of the diversity among the models, we try
combining them using machine learning. We use the similarity
scores from the models as inputs to a classifier and allow the
classifier to make the prediction. We use Weka’s logistic
regression tool [20]; its other classifiers performed similarly or
worse. We test several combinations of features, beginning with
the scores from the three models we have seen above. Next,
hypothesizing that relative document lengths may be predictive,
we add two more features: the ratio and average of the document
lengths. Finally, we use as our features the scores from all 108
model variations described in Section 4.1.4.

The results of the classifiers are shown in Table 4. We see that the
classifier that uses the set of three features (top line) achieves

better performance than any individual model. Adding additional
features does not help; if anything, it was useful to manually
select the set of three features.

Table 4. Classification accuracy of combination models.

Features Number of
features Accuracy

Baseline, annotations, punch line 3 0.818

Above, plus ratio and average of
document lengths 5 0.802

Various 108 0.801

We assess significance using paired t-tests on the sets of
individual predictions. At the p = 0.02 level, annotations beats
baseline, and the best classifier beats annotations; however, for
the punch line versus annotations and for the classifier versus
punch line, they just miss significance, yielding p-values around
0.06.

It is surprising that the punch line model performs so well here; in
light of the poor scores we will see for it in Section 6.2, it is also
somewhat misleading. Further analysis suggests that this model's
high accuracy in classification is an artifact of the sampling
procedure: by intent, we chose negative examples whose scores
under the baseline model closely matched the scores of the
positive examples. As a result, the baseline model has difficulty
distinguishing the classes. The annotations model has a similar
property. However, the punch line model tends to give different
scores than the other two; thus its positive and negative examples
were not pushed together by the choice of samples, and it could
outperform the other models in this setting.

6. RANKING
We next consider this “same jokes” task in a ranking setting.
Ranking is a more appropriate setting for evaluating the task if we
anticipate using the system to retrieve “more jokes like this.”

6.1 Setup
In this setting, we use one joke as a query, and we use one of the
document models described earlier to rank all the documents in
the collection. The relevant documents for this query are defined
as those jokes in the same cluster. We measure average precision,
recall at various cutoffs, and R-precision. We repeat this process
for every joke in the cluster, and calculate the average of the
measures for the cluster. After doing this for every cluster, finally
we report the averages across all 60 clusters.

6.2 Results
The results of the ranking experiments are displayed in Table 5.
We see that the order of performance is reversed from the
classification setting; here, the baseline model performs best and
the punch line model worst. This holds across all four measures.
The differences between the baseline and annotations models are,
however, not significant.

Table 5. Ranking performance of individual models.

Document
model MAP R-precision Recall

at 10
Recall
at 100

Baseline 0.793 0.744 0.860 0.966

Annotations 0.774 0.713 0.847 0.948

Punch line 0.514 0.458 0.587 0.737

One way to compare the performance of the models is with a
scatterplot of their scores, as in Figure 4. The plots show how
closely the annotations and baseline models track each other, as
their scores lie near the diagonal (Pearson correlation = 0.84).
They also show how the baseline model almost always gives
better results than the punch line model. However, we can also see
that for each alternative model, there are some clusters in which it
soundly beats the baseline. This diversity suggests that again there
is potential for improvement by combining the scores of the three
models.

Figure 4. Mean average precision of each joke cluster (one
data point per cluster). Diagonal shown for reference. Top,
baseline model versus annotations. Bottom, baseline versus

punch line.

6.3 Re-ranking
To combine the models, we return to the approach from above:
training a pairwise classifier using scores from the three models.
The Weka classifier outputs a probability score, not just a binary
decision, so we can use this score for ranking. In order to use a
pairwise classifier in the ranking setting, where the query is fixed,
we have two immediate possibilities. First, we could pair the
query with every other document in the collection, one by one,
and use the classifier’s scores to rank all the documents. Or, we

could take some set of top documents from the baseline model
and use the classifier to re-rank them. We take the latter approach,
for efficiency reasons, and also to exploit the fact that the baseline
classifier already has high recall.

To choose the number of documents to re-rank, we plot in
Figure 5 the recall curve as a function of the number of
documents. The curve levels off by 500 documents, at recall =
0.998.

Figure 5. Recall of the baseline model, averaged over all jokes.

In order to train a classifier to re-rank the top 500 documents, we
must create a new training set reflecting the distribution where the
model will now be applied. For the positives, we use all 442 pairs
of jokes in all clusters, since we need all the positive examples we
can get. To generate the negatives, we run the baseline ranking,
identify the top 500 documents, and sample randomly from them.
We use a ratio of about 1:2 for positives to negatives, which keeps
the size of the training set reasonably small. (We do not expect it
to be important to keep constant the ratio of positives to negatives
from training to test sets since we are using the model’s output for
ranking, as opposed to for classification.)

To create training and test splits, we divide the data into 10 groups
of clusters for cross validation. For each cluster, the training data
are the positives and negatives from the queries in the other 9
groups.

Table 6 shows the results of using the classifier to re-rank the top
500 documents. (The baseline model, when restricted to its top
500 hits, gives the same scores as in Table 5.) This classifier,
when used by itself, performs worse than the baseline. Once more,
we examine the scatterplot of scores (Figure 6, top). This time we
see that while the classifier does not perform as well as the
baseline overall, it is a toss-up as to which works better for any
particular cluster. This means that yet once again, we stand to
benefit by combining these methods.

Since the machine learning classifier has already been given the
baseline score as a feature, we create this final combination by
simply linearly interpolating between the output score of the
classifier and the baseline score, giving them equal weight. This
resulting ranking turns out to be significantly better than any of
the others. The bottom of Figure 6 shows how, with the
interpolated classifier, the mean average precision of almost every
joke cluster improves compared to the baseline.

Table 6. Ranking performance using classifier to re-rank.

Document model MAP R-precision Recall
at 10

Recall
at 100

Baseline top 500
re-ranked with
classifier

0.749 0.684 0.841 0.965

Baseline top 500
re-ranked with
(0.5 classifier +
0.5 baseline)

0.822 0.772 0.882 0.977

Figure 6. Mean average precision of each joke cluster (one

data point per cluster). Top, baseline model versus classifier.
Bottom, baseline versus interpolated classifier.

We performed a few experiments analyzing the contribution of
the classifier, and in particular, testing whether the improvement
in score could be achieved in some simpler way. The results of
these experiments are shown in Table 7. One method for
improving retrieval in many situations is to expand the query
using pseudo-relevance feedback. We created such an expanded
query using linear interpolation between the original query and
the top t documents [23]. We used t = 2, and weighted the original
query and the new terms 0.4 and 0.6, respectively. Its performance
is virtually identical to the baseline.

Next, we investigated whether the boost from the classifier could
be due to it using the symmetric version of KL divergence. For
this run, we use the baseline model but use the symmetric version
of the score. This by itself is clearly not helpful either.

Table 7. Other experiments.

Document model MAP R-precision Recall
at 10

Recall
at 100

Baseline with
pseudo-relevance
feedback

0.795 0.740 0.851 0.974

Baseline using
symmetric score 0.594 0.534 0.711 0.841

7. ANALYSIS
From these experiments we have learned that the annotations
model performs fairly closely to the baseline bag of words model,
while the punch line carries differing information. In the
classification setting, the task is difficult for the baseline by
design, so the punch line model scores well through its contrast.
In the ranking task, where the comparison is more fair, the
baseline prevails over the other two models. In both settings, we
achieve the best results by combining the three document models.

We gain some insight into the utility of the three models by
looking at specific queries where they performed differently. Our
intuition was that since words from the query would not
necessarily appear in the relevant documents, the baseline model
would have low recall. For the most part, it seems that if a joke is
sufficiently long, certain words actually do appear in all its
versions. In the challenging-looking joke cluster from Figures 1–
3, for example, the baseline model gives a reasonable MAP for
ranking of 0.62; the annotations model scores mildly higher.
When a joke is short, the baseline model may still perform well
provided there are distinctive words that appear in every version.
For instance, the unusual words “trampoline” and “tire gauge” in
the joke versions in Figure 7 allow the baseline model to retrieve
these clusters perfectly.

There is a mild indication that joke length correlates with the
success of the annotations model. In particular, for the cases
where the annotations model works better than the baseline, the
joke is either short (under 50 words) or long (over 120). For jokes
of medium length, either the two models give comparable scores,
or the baseline model wins. We can explain the success of the
annotations model at short jokes by referring back to the example
from Section 4.1.3 involving “skid marks;” in cases such as this,
there are not always enough words preserved for the baseline

Figure 7. Joke clusters easy for the baseline.

What's the difference between a viola and a trampoline? You
take your shoes off to jump on a trampoline.

Q: What's the difference between a viola and a trampoline?
A: You don't have to take your shoes off before you jump on
a viola.

What's the difference between a bassoon and a trampoline?
You take off your shoes when you jump on a trampoline.

Q: How does a blonde measure his/her IQ?
A: With a tire gauge! (da da dum)

Q: How do you measure a blonde's intelligence?
A: Stick a tire pressure gauge in her ear!

model to use. For instance, in the example in Figure 8, the
annotations model scored perfectly. The baseline model had a
MAP of 0.5; it found the correct documents by rank 2, but
retrieved other tiger and polar bear jokes (respectively) as its top
matches.

As for punch lines, when the punch lines match closely, this
seems to be a sufficient condition for the jokes to match.
However, this only happens for some jokes.

Overall, it seems as though every joke has some invariant phrases.
However, it is difficult to describe, without actually looking at the
joke, which phrases those might be. This is why using a
combination of methods makes sense: each deals well with certain
types of jokes.

8. DISCUSSION
In terms of other possible methods for recognizing joke variants,
we considered viewing variants as if they were translations into
other languages and then learning a translation model of common
word substitutions [6]. This is similar to Berger and Lafferty’s use
of translation models between (English-language) queries and
documents, designed to help connect words having the same
meaning or topic [4]. However, those models require a large
amount of training data (matched documents), whereas our set of
labeled documents, on the contrary, is quite small.

The idea that most joke clusters have particular invariant words or
phrases relates to the idea of “key” or “core” concepts, introduced
by Allan et al. [1] and recently further developed for use with
verbose queries [3]. Even absent any intuitions about jokes, this
“key concept” idea would seem relevant because our queries are
long—entire jokes; Bendersky and Croft argue that extraneous
concepts tend to hinder retrieval performance [3]. It is not clear
that concepts which are key in standard text—e.g., proper
nouns—would play the same role in jokes, nor that we would
have enough data to learn to identify the important terms.
However, it would be interesting to try modifying these
techniques for jokes.

One possible approach for handling queries whose terms may not
appear in the relevant documents comes from work on “vague
queries.” This was introduced by Motro for the database
community [15], but it could be seen as a type of query expansion.
The idea is that if a query returns no matches, it can be broadened
by examining the closest matches in the corpus. For structured
databases, refining the query requires having an appropriate
similarity measure for each type of field—for instance, geographic
proximity for cities but temporal distance for times. Zhu et al.
pose an analogous problem in information retrieval [24]. They
describe the challenge of searching for “that book about the
guitar-playing sergeant,” when the desired title is actually
“(Captain) Corelli's Mandolin.” Since the data type in this case is
words, the work uses a similarity measure defined over WordNet
to suggest candidate modifications of the query terms. Among the

many possible expansions or substitutions for the query, modified
queries are judged good (as opposed to vague) if their terms
frequently appear close together in the corpus at large. In an
earlier initiative, Woods et al. address this same situation, dubbing
it the “paraphrase problem” [21], [22]. Their approach involves
building a “conceptual index,” a large semantic taxonomy
describing relationships among words and phrases. Given a query,
the system searches among candidate modifications and
generalizations of the query terms. The quality of a new query is
judged both by the proximity of the terms within the retrieved
documents and also by the similarity of the new query to the
original.

These approaches could be promising for querying for jokes, but
we see a few drawbacks. First, they would be useful for retrieving
some matches to a joke, but since they choose combinations of
new query terms that are popular in the corpus, their recall could
be low. Second, even for short queries, there might be an
intractably large search space of plausible substitutions in the
jokes domain. To state this more plainly, jokes are not just
paraphrases. Paraphrasing might in fact describe our difficulties in
searching for song lyrics and quotations. But for jokes and
puzzles, it will not be enough to consider synonyms and related
terms; entities can shift broadly in different versions, and large
swaths of details can be modified or dropped.

It is an open question whether, and to what extent, semantic
processing needs to be added to statistical models of language
[22]. For identifying “the same” joke, intuition suggests that we
would need, at a minimum, information extraction for all the
entities, events, and logical relations (each possibly implicit) in a
joke—capabilities far beyond today's reach. Yet in many cases in
our corpus, it seems to be raw words that matter, essential phrases
like “skid marks.” Perhaps such words are informative because
the corpus is of limited size, because distinctive phrases tend to be
preserved in transmission, or because these phrases in themselves
define the identity of the joke. Regardless, jokes are yet another
domain where the bag of words model performs surprisingly well.
Even when they are combined with our other models, however,
there is much room left for improvement.

We have used knowledge of a particular domain to build a
retrieval system that performs better at ranking and classification
than the standard model does in this domain. Along the way, we
have used the domain, humor, to argue for alternative definitions
of similarity between documents: that they exist and that they
matter. In particular, documents in some domains are difficult to
search for at present because one cannot be certain of any words
the item will contain; only their relationships count.

For a person learning a foreign language, the standard advice goes
that they will have mastered it only when they can tell jokes in the
language. For computers processing human language, perhaps
humor will serve as that same challenge and yardstick.

9. ACKNOWLEDGMENTS
Our thanks to Mario Di Marzo for collaborating on an early
version of this project. David Jensen provided support for this
work, and also suggested the “same research problem” analogy.
Thanks also to Mark Smucker for help indexing the corpus and
Cindy Loiselle for her careful editing suggestions. This work was
supported in part by the Center for Intelligent Information
Retrieval.

Figure 8. Joke cluster easy for annotations, difficult for
the baseline.

Q: What's black and white and bounces?
A: A polar bear on a pogo stick!

Q: What's striped and bouncy?
A: A tiger on a pogo stick!

10. REFERENCES
[1] Allan, J., Callan, J., Croft, W. B., Ballesteros, L., Broglio, J.,

Xu, J., and Shu, H. 1997. INQUERY at TREC-5. In
Proceedings of the 5th Text Retrieval Conference. NIST, 119–
132.

[2] Attardo, S. and Raskin, V. 1991. Script theory revis(it)ed: Joke
similarity and joke representation model. Humor: International
Journal of Humor Research 4(3-4), 293–347.

[3] Bendersky, M. and Croft, W. B. 2008. Discovering key
concepts in verbose queries. In Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM Press, New
York, NY, 491–498.

[4] Berger, A. and Lafferty, J. 1999. Information retrieval as
statistical translation. In Proceedings of the 24th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM Press, New
York, NY, 222–229. DOI=
http://dx.doi.org/10.1145/312624.312681

[5] Binsted, K., Bergen, B., Coulson, S., Nijholt, A., Stock, O.,
Strapparava, C., Ritchie, G., Manurung, R., Pain, H., Waller,
A., and O'Mara, D. 2006. Computational humor. IEEE
Intelligent Systems, 21(2), 59–69. DOI=
http://dx.doi.org/10.1109/MIS.2006.22

[6] Brown, P. F., Cocke, J., Della Pietra, S., Della Pietra, V. J.,
Jelinek, F., Lafferty, J. D., Mercer, R. L., and Roossin, P. S.
1990. A statistical approach to machine translation.
Computational Linguistics, 16(2), 79–85.

[7] Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. 2001.
Eigentaste: A constant time collaborative filtering algorithm.
Information Retrieval Journal, 4(2), 133–151.

[8] Hofstadter, D. and Gabor, L. 1989. Synopsis of the workshop
on humor and cognition. Humor: International Journal of
Humor Research, 2(4), 417–440.

[9] Kruger, A., Giles, C. L., Coetzee, F. M., Glover, E., Flake, G.
W., Lawrence, S., and Omlin, C. 2000. DEADLINER:
Building a new niche search engine. In Proceedings of the 9th
International Conference on Information and Knowledge
Management. ACM Press, New York, NY, 272–281.

[10] Lafferty, J. and Zhai, C. 2001. Document language models,
query models, and risk minimization for information retrieval.
In Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval. ACM Press, New York, NY, 111–119. DOI=
http://dx.doi.org/10.1145/383952.383970

[11] Manning, C. D., Raghavan, P., and Schütze, H. 2008.
Introduction to Information Retrieval. Cambridge University
Press.

[12] McCallum, A. K., Nigam, K., Rennie, J., and Seymore, K.
2000. Automating the construction of internet portals with
machine learning. Information Retrieval, 3(2), 127–163. DOI=
http://dx.doi.org/10.1023/A:1009953814988

[13] Mihalcea, R. 2007. Multidisciplinary facets of research on
humour. In Masulli, F., Mitra, S., and Pasi, G., eds.,

Applications of Fuzzy Sets Theory (Proceedings of the
Workshop on Cross-Language Information Processing),
Lecture Notes in Artificial Intelligence. Springer, 412–421.

[14] Mihalcea, R. and Strapparava, C. 2006. Technologies that
make you smile: Adding humor to text-based applications.
IEEE Intelligent Systems, 21(5), 33–39.

[15] Motro, A. 1988. VAGUE: A user interface to relational
databases that permits vague queries. ACM Trans. Inf. Syst.,
6(3), 187–214.

[16] Raskin, V. 1985. Semantic Mechanisms of Humor. Studies in
Linguistics and Philosophy. D. Reidel.

[17] Ritchie, G. 2003. The Linguistic Analysis of Jokes. Routledge
Studies in Linguistics, Vol. 2. Routledge, London.

[18] Schatz, B. R. 2002. The Interspace: Concept navigation across
distributed communities. Computer, 35, 1 (Jan. 2002), 54–62.

[19] Taylor, J. M. and Mazlack, L. J. 2007. Multiple component
computational recognition of children’s jokes. In IEEE
International Conference on Systems, Man and Cybernetics.
1194–1199.

[20] Witten, I. H. and Frank, E. 2005. Data Mining: Practical
Machine Learning Tools and Techniques, 2nd Edition. Morgan
Kaufmann, San Francisco, CA.

[21] Woods, W. A. 1997. Conceptual indexing: A better way to
organize knowledge. Technical Report SMLI TR-97-61. Sun
Microsystems Laboratories, Mountain View, CA.

[22] Woods, W. A., Bookman, L. A., Houston, A., Kuhns, R. J.,
Martin, P., and Green, S. 2000. Linguistic knowledge can
improve information retrieval. In Proceedings of the 6th
Conference on Applied Natural Language Processing. Morgan
Kaufmann, San Francisco, CA, 262–267. DOI=
http://dx.doi.org/10.3115/974147.974183

[23] Zhai, C. and Lafferty, J. 2001. Model-based feedback in the
language modeling approach to information retrieval. In
Proceedings of the 10th International Conference on
Information and Knowledge Management. ACM Press, New
York, NY, 403–410. DOI=
http://dx.doi.org/10.1145/502585.502654

[24] Zhu, J., Eisenstadt, M., Song, D., and Denham, C. 2006.
Exploiting semantic association to answer ‘vague queries’. In
Li, Y., Looi, M., and Zhong, N., eds., Advances in Intelligent
IT – Active Media Technology 2006. Frontiers in Artificial
Intelligence and Applications, Vol. 138. IOS Press, 73–78.

[25] Zrehen, S. and Arbib, M. A. 1998. Understanding jokes: A
neural approach to content-based information retrieval. In
Proceedings of the 2nd International Conference on
Autonomous Agents. ACM Press, New York, NY, 343–349.
DOI= http://dx.doi.org/10.1145/280765.280856

[26] “Logic Problems – easy,”
http://www.folj.com/puzzles/easy.htm

[27] “The Aristocrats (2005),” The Internet Movie Database,
http://www.imdb.com/title/tt0436078/

[28] “Brain Teasers and Math Puzzles,” Syvum Technologies,
http://www.syvum.com/teasers/

