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ABSTRACT 
In a corpus of jokes, a human might judge two documents to be 
the “same joke” even if characters, locations, and other details are 
varied. A given joke could be retold with an entirely different 
vocabulary while still maintaining its identity. Since most 
retrieval systems consider documents to be related only when 
their word content is similar, we propose joke retrieval as a 
domain where standard language models may fail. Other 
meaning-centric domains include logic puzzles, proverbs and 
recipes; in such domains, new techniques may be required to 
enable us to search effectively. For jokes, a necessary component 
of any retrieval system will be the ability to identify the “same 
joke,” so we examine this task in both ranking and classification 
settings. We exploit the structure of jokes to develop two domain-
specific alternatives to the “bag of words” document model. In 
one, only the punch lines, or final sentences, are compared; in the 
second, certain categories of words (e.g., professions and 
countries) are tagged and treated as interchangeable. Each 
technique works well for certain jokes. By combining the methods 
using machine learning, we create a hybrid that achieves higher 
performance than any individual approach.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; H.3.1 [Information Storage and Retrieval]: 
Content Analysis and Indexing 

General Terms 
Algorithms 

Keywords 
Humor, document similarity, domain-specific retrieval 

1. INTRODUCTION 
Humor is famously difficult for machines to comprehend. It 
brings into play ambiguities, implications, and exaggerations, all 
in the service of violating expectations—which requires one to 
have expectations in the first place. To believe Hollywood writers, 
humor will be the last skill for artificial intelligences to acquire. 

To believe linguistic and computational researchers, jokes are a 
domain where “the question of semantics can no longer be 
avoided” [25]; and worse, they contain “language that requires 
deep conceptual knowledge about the details of human 
experience” [5]. 

One concept that humor brings into focus is an alternative notion 
of document similarity. Even more than is true for the news 
stories and other informative documents typically used in 
information retrieval, jokes can be related without having many 
words in common. What we would consider “one joke” can be 
retold in vastly different ways.1 For instance, Figure 1 shows a 
joke, and Figure 2 outlines how its elements change in other 
documents in our collection.  

Characters can change, the setting can change; it is difficult to 
describe, at the word level, what it is that stays constant in a 
joke’s structure or meaning. One way to evoke this challenge is to 
try to formulate a search query for a joke—for instance, to 
determine if any version of it is present in a given corpus. 
(Perhaps we hazily recall the joke but want to see a full version 
before retelling it.) With the example shown in Figure 1, we might 
begin with “priest rabbi accident wine,” but then pause, realizing 
the joke could really be about any two people, so it would be 
better to remove them from the query. Next, “accident” could be 
“crash” or “collision,” and “wine” could be “whiskey” or 
“champagne.” What is left? Perhaps a few variations on “drink 
police accident,” a query which is less precise and would still fail 
to retrieve the version in Figure 3. The problems here are not just 
synonymy or paraphrasing, but also the difficulties of knowing 
which aspects of a joke are likely to vary and capturing the wide 
range of possible alternatives. 

Jokes are just one of many domains in which this structural, or 
logical, document similarity can frustrate searches. Difficulty 
formulating queries to describe a particular meaning also arises 
when searching for famous quotations. When one is asked, “Can 
you find that quote where Einstein said …,” sometimes all one 
can do is verify that Einstein didn’t say it, and that in fact no one 
said exactly that phrase, even though the quote we wanted is 
likely out there. Song lyrics also have this property: one must 
remember them verbatim to find them on the web. A similar 
domain is that of proverbs: a given saying may be expressed in 
numerous ways, particularly across cultures, and it would be 
interesting to find versions of the same message. 

                                                                    
1 See, for example, the recent documentary The Aristocrats, 

which explores the variations of a single joke [27].  
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A genre closely related to jokes is logic and math puzzles: having 
solved how to use a five-gallon bucket and a three-gallon bucket 
to measure out exactly four gallons of water [26] shows one 
immediately, for example, how to use a 100 mL test tube and a 60 
mL test tube to measure exactly 80 mL of hydrochloric acid. In 
fact, probably every grade school “story problem” fits into a small 
number of templates; it is easy to generate new problems of a 
given type (see [28]), but fortunately for teachers, no reverse tool 
(automatic recognition and solution of homework exercises) is yet 
known to us. Unfortunately for researchers, neither is there yet a 
system to refer one to “the same research problem” that may have 
been studied using different terminology in another field—
although a few projects have been aimed at this idea [18]. 

One final example where structure can matter more than word 
content is cooking. Websites with recipes can suggest other dishes 
that contain “chicken” or “green beans.” But in the process of 
learning to cook, it often takes seeing a few examples before we 
begin to recognize a general technique, e.g., that one can roast 
pork with peppers using the same steps and the same group of 
seasonings as for the chicken with green beans. Retrieving other 
recipes with the same structure would make it easier for novices 
to learn which aspects one can vary. 

In all these domains, we expect search to be difficult because the 
user cares less about the word content of a document—the 
information captured by standard retrieval models—and more 
about the logical relationships among its entities. In this paper, we 
limit ourselves to studying jokes. Specifically, we focus on 
recognizing whether two documents are “the same joke,” or as we 
will term it, whether they “match” or belong to the same “joke 
cluster.” This functionality would be a critical component of a 
joke search engine that incorporates meaning. In response to a 
query, a results page could list several clusters; for each cluster, it 
would display one joke and a link to “other versions of this.” 
Creating that list of other versions is the task we address here. 

To outline what follows in the paper: Sections 3 and 4 introduce 
our data and models, including several document models specific 
to jokes. In Section 5, we consider the task of pairwise 
classification: given two jokes, decide if they match. Next, in 
Section 6 we move to a ranking setting, which is closer to our 
eventual goal: given one joke, retrieve a ranked list of matches. 
Finally, in Section 6.3 we improve the ranking function by 
incorporating a classifier. We begin now by situating this project 
within the context of other research on humor and on domain-
specific retrieval; other related work is deferred to Section 8. 

2. PREVIOUS WORK 
2.1 Humor Studies 
There is a small but growing body of research in computational 
humor. This area typically encompasses two tasks: distinguishing 
humorous from non-humorous documents, and generating humor. 
Binsted et al. collects the work of several groups in this field [5]. 
Some recognition tasks include using text classification to 
distinguish humorous one-liners from other sentences like 
headlines or proverbs [14], or recognizing pun-like jokes [19]. 
One early article with a spirit similar to ours critiques IR 
techniques as relying too heavily on the specific words in a 
document; it proposes an architecture for neural networks that 
would infer the implied context of a sentence and then recognize 
jokes by the incongruities they contain [25]. Though only a toy 

Figure 1. One version of a joke. 

 

A Rabbi and a Priest are driving one day and, by a freak 
accident, have a head-on collision with tremendous force. 
Both cars are totally demolished, but amazingly, neither of the 
clerics has a scratch on him. After they crawl out of their cars, 
the rabbi sees the priestʼs collar and says, “So youʼre a priest. 
Iʼm a rabbi. Just look at our cars. There is nothing left, yet we 
are here, unhurt. This must be a sign from God!” Pointing to 
the sky, he continues, “God must have meant that we should 
meet and share our lives in peace and friendship for the rest 
of our days on earth.” The priest replies, “I agree with you 
completely. This must surely be a sign from God!” The rabbi 
is looking at his car and exclaims, “And look at this! Hereʼs 
another miracle! My car is completely demolished, but this 
bottle of Mogen David wine did not break. Surely, God wants 
us to drink this wine and to celebrate our good fortune.” The 
priest nods in agreement. The rabbi hands the bottle to the 
priest, who drinks half the bottle and hands the bottle back to 
the rabbi. The rabbi takes the bottle and immediately puts the 
cap on, then hands it back to the priest. The priest, baffled, 
asks, “Arenʼt you having any, Rabbi?” The rabbi replies, 
“Nah... I think Iʼll wait for the police.” 

 

Figure 2. Variations of the same joke (excerpts). 

An Irish priest and a Rabbi get into a car accident … The 
priest asks him, “Are you all right, Rabbi?” The Rabbi 
responds, “Just a little shaken.” The priest pulls a flask of 
whiskey from his coat and says, “Here, drink some of this it 
will calm your nerves.” … “Well, what are we going to tell the 
police?” “Well,” the priest says, “I donʼt know what your aftʼ to 
be tellinʼ them. But Iʼll be tellinʼ them I wasnʼt the one drinkinʼ.” 

A woman and a man got into a really bad car accident. Both 
cars are totaled … 

Thereʼs a guy from ARMY driving from West Point to the 
Meadowlands, a guy from the NAVY was driving from 
Annapolis to the Meadowlands, and an Air Force guy whoʼs 
driving from McGwire in South Jerz to the Meadowlands just 
to watch the Jets. In the middle of the night with no other cars 
on the road they hit each other and all cars go flying off in 
different directions. … The Air Force guy says “Let me see 
what else survived this wreck.” So he pops open his trunk 
and finds a full unopened bottle of Jack Daniels. … 

 

Figure 3. Fifth variation, with diverging vocabulary. 

An English man and an Irish man are driving head on, at 
night, on a twisty, dark road. Both are driving too fast for the 
conditions and collide on a sharp bend in the road. To the 
amazement of both, they are unscathed, though their cars are 
both destroyed. In celebration of their luck, both agree to put 
aside their dislike for the other from that moment on. At this 
point, the Irish man goes to the boot and fetches a 12 year 
old bottle of Jameson whiskey. He hands the bottle to the 
English man, whom exclaims, “may the English and the Irish 
live together forever, in peace, and harmony.” The English 
man then tips the bottle and lashes half of it down. Still 
flabbergasted over the whole thing, he goes to hand the 
bottle to the Irish man, whom replies: “no tanks, Iʼll just wait till 
the Garda get here!” 



system was implemented, the authors do discuss joke retrieval as 
a domain where the query words may not be found in a document, 
and where, they argue, one must then include semantics in search. 
As for humor generation, there are systems that generate pun-
based riddles or humorous acronyms [5]; such systems begin with 
a specific humorous template and automatically instantiate it. 
Other applications include inserting humor into emails or chatbots 
as a means to improve human-computer interactions [5], [14]. 
Finally, there is a search engine for jokes called Jester, but it has 
been created and studied exclusively as a recommender system 
[7]. The models of humor that help computers recognize or 
construct it could be valuable to anyone studying jokes, but none 
of the above articles considers variations of a single joke, the 
central idea of this paper.  

Outside of computer science, humor research has a long history in 
fields like linguistics, psychology and philosophy. Mihalcea offers 
a quick survey of this diverse work [13]; for more information, 
see the International Society for Humor Studies 
(http://www.hnu.edu/ishs) and its journal (e.g., [2]). The most 
influential current theories are the Semantic Script-Based Theory 
of Humor [16] and its extension, the General Theory of Verbal 
Humor (GTVH) [2]. Both describe humor as resulting from two 
contrasting interpretations of the same text. GTVH specifies six 
properties of a humorous text, from lower-level aspects, like the 
style and the target (i.e., butt) of a joke, to higher-level aspects, 
like the contrasting themes and logical mechanism by which the 
humor unfolds. A recent book by Ritchie offers a strong critique 
of these and related theories as being poor in testable hypotheses, 
if rich in intuition [17]. Drawing on methodologies from artificial 
intelligence and generative linguistics, Ritchie lays out properties 
a formal model of humor would need to satisfy, and as a first step 
towards that goal, he begins a bottom-up, descriptive analysis of 
certain types of texts, among them puns. 

In a chapter on joke identity and similarity, Ritchie discusses the 
“same joke” idea, that certain variations preserve a joke's core 
identity [17]. This concept was earlier suggested by Hofstadter 
and Gabor, who described how a given “ur-joke” or “skeleton” 
can underlie many different jokes [8]. Their example “ur-jokes” 
permit quite a wide variety of instantiations, as long as the key 
joke entities and their logical relationships are present. Ritchie 
points out that one can view jokes either as consisting of a central 
core with variations, or as having degrees of similarity to a great 
range of jokes, across several axes of variation. The latter view 
fits in with GTVH, in which the six properties are said to form a 
strict order. Changing the joke's target, for example, would 
purportedly create a variation farther from the original than if one 
changed the joke's narrative style. In the present work, we use an 
ad hoc rule to describe the jokes we consider to be the same, but 
the situation is not clear-cut (see Section 3). 

This project is unusual for combining humor studies with 
information retrieval. In the course of building good statistical 
models for jokes—in particular, models to identify sets of jokes 
having the same meaning—we may expect to find new insights 
about jokes themselves. In addition, for a computational area 
whose practical utility has been doubted [17], a jokes search 
engine may be a good motivating application. A search engine 
that could retrieve joke clusters in response to queries containing 
possibly different words would enable users to effectively search 
through jokes, something not currently possible. Such a system 
would demand joke recognition for its spidering step, as well as 

the identification of matching jokes, our current goal, for 
organizing the results of a query. 

2.2 Domain-Specific Retrieval 
A search engine for jokes is an example of a domain-specific 
retrieval system. Previous authors have discussed the advantages 
of specialized systems for performing complex, domain-specific 
queries on structured data gathered from the web—for instance, 
on collections of research papers, movie show times, or airplane 
flights [9], [12]. Certainly the domains mentioned in the 
introduction (quotations, puzzles, etc.) could all be easier to 
navigate if they had specialized search tools. In the articles above, 
the main challenges of building such systems consisted of 
efficiently spidering the web and recognizing informative 
documents (a task we sidestep by using existing collections), and 
of correctly extracting the important fields from the text. Our 
situation is different: we do not know what information to extract. 
As noted above, there is no working model of what matters for a 
joke's identity; there is not even a good intuitive model. So, we 
shall begin by using language modeling, which after all, performs 
well for that very complicated text domain of natural language. 
We also build models that capture structures we expect to be 
important to a joke's identity: namely, the punch line, and the 
(abstractions of) entities that appear in the joke. 

The approaches and task definitions we use here may inform work 
in other domains where the word content can vary widely without 
affecting the meaning. In particular, the notion of abstracting the 
entities, along with any future techniques for incorporating 
semantics (to the extent this turns out to be necessary), will be 
applicable to such domains. In Section 8 we discuss other 
technical approaches that could potentially be brought to bear on 
joke retrieval and these related tasks. 

3. CORPUS 
The corpus consists of approximately 11,000 jokes. These were 
downloaded from 13 joke archive sites on the web. It was 
important for the corpus to contain multiple versions of a number 
of jokes; to increase the odds of such repetitions, several 
specialized collections were included, such as music jokes and 
profession jokes, that seemed likely to include repeats. 

A large number of the documents contained humor outside the 
scope of the jokes we wanted to study. We manually removed 
items like one-liners (which included “yo mama” jokes), quotes, 
funny but true stories, sarcastic commentaries, “top ten ways 
to …,” and lists. The remainder consists of things like narrative 
stories (like in Figure 1), light bulb jokes, and question/answer 
jokes (e.g., “Q: What do you call 5000 dead lawyers at the bottom 
of the ocean? A: A good start!” or “Q: What do you call a snail on 
a ship? A: A snailor!”). Duplicate and near-duplicate documents 
(e.g., those that became identical after stemming and stopping) 
were also removed. 

Sixty clusters of jokes were labeled manually. This was done by 
creatively constructing queries to find matches for particular 
jokes. (For humans, this was not difficult, but recall was 
imperfect: in several cases, the retrieval systems found matches 
that the authors had missed.) Most jokes do not appear to have 
matches, but the corpus certainly contains more clusters than 
those we labeled. The clusters range in size from 2 to 13 jokes, 
and they include a total of 217 documents.  



Judging whether two jokes match can be subjective. As a rule of 
thumb, we labeled them as matching if one might easily say, “I 
know that joke, except in my version [something varies].” 
However, there are many ambiguities. For instance, consider light 
bulb jokes. They might be characterized as a single cluster, if only 
there were not thousands of them: “How many [people of some 
type] does it take to change light bulb? [More than one], because 
[they have some particular property].” At the same time, a rewrite 
into a non-light bulb joke poking fun at the same property—a 
transformation that would otherwise seem minor—might be seen 
as changing the joke, since the light bulb genre is such a 
recognizable, fixed form. For these reasons, we avoided labeling 
light bulb jokes and other “difficult” jokes altogether. 

In the corpus as a whole, almost half the jokes are just two 
sentences long. Those jokes we labeled tended to be longer 
stories, averaging about 12 sentences. This was probably a bias in 
labeling, and it could imply that the results on the short jokes will 
be those most representative of future performance. However, it is 
also possible that the same bias—perhaps, that longer jokes were 
more interesting to look for, and that shorter jokes, often word 
puns like the “snailor,” were harder to vary—would affect the 
queries of future users. 

4. METHODS 
We use a language modeling approach. The document models and 
similarity measures described next are employed in both the 
classification and ranking tasks. As noted earlier, we use a 
standard statistical language model as a baseline [11]. Then, we 
implement variations that specially treat those structures we 
expect to be important to a joke’s identity. 

4.1 Document Models 
4.1.1 Baseline 
The baseline is a standard unigram (bag of words) model. With 
this, each document is initially represented as a multinomial 
probability distribution over its words. The probabilities are 
estimated using maximum likelihood. That is, if word w occurs 
tfw,d times in a document d having length Ld, then in the document 
model Md, 

! 

P(w |Md )MLE =
tfw,d

Ld

 . 

To avoid assigning any words probability zero, we use linear 
interpolation smoothing to combine the above value with the 
probability of the word in the general corpus: 

! 

P(w |M
d
) = "P(w |M

d
)
MLE

+ (1# ")P(w |M
c
)
MLE

. 

We determine λ through a parameter sweep, performed separately 
for each model and task. In the ranking setting, we find the value 
λ = 0.4 to be optimal for all models; for classification, we find λ = 
0.99 to be near-optimal for all models. 

Throughout this paper, the query is also a document from our 
collection. However, we do not need to smooth the query model, 
so we just use the maximum likelihood value for a query q: 

! 

P(w |Mq ) = P(w |Mq )MLE =
tfw,q

Lq

. 

4.1.2 Punch Line 
The first alternative to the baseline captures the intuition that the 
ending of a joke is crucial to its identity and is likely to remain 
constant despite the rest changing. For this punch line model, we 
simply identify the last sentence and throw away everything 
before it. In shortening the document, we are losing information; 
however, we speculate that the final sentence contains the "key 
concepts" for the joke, which will help target the search [3]. The 
same equations above are used, but every document in the corpus 
is truncated. 

4.1.3 Annotations 
This approach is motivated by the idea that if the characters, 
setting and other details can change in a joke, then perhaps we 
could recognize those changeable elements and replace them with 
abstractions. For instance, at an abstract level, the joke from the 
introduction might read like this: “A person and a person were 
traveling in vehicles that collided.” We create such a 
representation by recognizing certain words and “annotating” 
them with their category. Using this representation, our judgments 
of joke similarity might improve for two reasons. First, the 
annotated words will now match: among jokes in the same cluster, 
these words may correctly match where the original text did not. 
Second, the un-annotated words will be informative when 
examined separately from the annotated words. This set will 
include both generic words and unusual words; we hope it will be 
distinctive within each joke cluster. 

The following text shows a joke from our corpus and its annotated 
version (after stopping and stemming): 

“Q: What's the difference between a dead snake in the road and a 
dead lawyer in the road?  

A: There are skid marks in front of the snake.” 

“differ dead #animal[snake] #location[road] dead #person[lawyer] 
#location[road] skid mark front #animal[snake]” 

As one might imagine, when using these annotations (and 
ignoring the words inside the brackets), the above joke matches 
identically to another that begins: “Q: What's the difference 
between a dead dog in the road and a dead politician …” 

To implement the annotations, there are two aspects to decide: (a) 
how to annotate the text, and (b) how to treat the annotated text. 
For the first question, we create word lists for ten categories (see 
Table 1) using the web as well as gazetteers included with the 
information extraction tool GATE (http://gate.ac.uk). During 
preprocessing, any document word that matches a list word is 
tagged (respecting some order of precedence for the lists). This is 
a coarse method and yields obvious markup errors, for example 
with homographs and irregular plurals, but such problems are 
present already in the bag of words model. It would also have 
been possible to create the word lists using WordNet. Such an 
approach would be easier to generalize to other domains and other 
categories. But the manually constructed lists are sufficient for a 
first pass; in addition, they are easy to modify, which lets us 
correct the more salient markup errors. 



Table 1. Categories of annotations. 

animal number 
color organization 
currency person 
location time/date 
music vehicle 

 

Once the documents are annotated, there are a number of options 
for how to treat the new tokens. A model could be used that treats 
“#animal[dog]” as similar but not identical to “#animal[snake].” 
This would be similar to a translation model, as we will discuss in 
Section 8. Instead, we choose to treat all “#animal[]” tokens as 
identical. A translation model giving different probabilities for 
each substitution would behave midway between treating the 
tokens as distinct, as in the baseline, and treating them as 
identical, so we place the annotations model at that second 
extreme.  

Formally, for a plain, un-annotated word under the annotations 
model, P(w|Md)MLE is as before. For a word w annotated from 
word list A, the probability becomes 

! 

P(w |Md )MLE =
tfa,d

Lda"A

# . 

4.1.4 Combination Models 
Once the documents have been annotated and subdivided into 
punch line and non-punch line portions, it is easy to invent 
additional document models that use this same information 
differently. For instance, one can use only the punch line, but use 
the annotations model within it. Or rather than using the annotated 
tokens within the bag of words, one could simply delete them, in 
the spirit of treating them like stop words; after all, almost every 
joke probably contains a “#person.” In the realm of possible but 
probably unhelpful models, one can treat a document as a bag of 
just two types of tokens: punch line and non-punch line words; or, 
annotated and non-annotated words. Or, to test the conjecture that 
only some annotation categories are useful, one can choose to use 
some types of labels but not others, for instance treating all 
“#animal” tokens as identical, but ignoring “#location” tags and 
reverting these to the original words. 

In our code base, we provide a flexible syntax for specifying 
document models along the above lines, and we create 108 such 
variations. The scores from these models are given as inputs to the 
machine learning classifier introduced in Section 5.3. 

4.2 Similarity/Ranking Measures 
To measure the similarity of a query to a document, we use the 
Kullback-Leibler (KL) divergence of the query and document 
models. This measure is used to rank the documents during 
retrieval (Section 6) as well as to evaluate the similarity of two 
documents (Section 5). KL divergence is a natural (though 
asymmetric) measure of the distance between two probability 
distributions; it is zero when the distributions are equal and 
positive otherwise. When the query is held constant, as in the 
retrieval setting, KL divergence is rank-equivalent to cross 
entropy, H(p,q), as shown here [10]: 

! 

KL(Md ||Mq ) = P(w |Mq )log
P(w |Mq )

P(w |Md )w"q

#

= P(w |Mq )logP(w |Mq )
w"q

#

$ P(w |Mq )logP(w |Md )
w"q

#

= $H(q) + H(p,q)

=
rank

H(p,q)

 

Often, the summation in the formula is taken over all words in the 
vocabulary. Since our query model is not smoothed, P(w|Mq) (and 
thus the whole term) is zero for words outside the query. 

The function above allows different weights (probabilities) for the 
query terms, as well as for the document terms. It is necessary to 
use a function with this property since in our framework the query 
is always a full document, not just a few distinct words. When the 
query weights are all equal, cross entropy reduces to standard 
query likelihood. 

5. CLASSIFICATION 
In the classification task, the system is given two documents, and 
it must determine whether they are variations of the same joke. 
We set this up as for a machine learning task—creating separate 
training and test sets and using cross validation—even though 
most models only “learn” a cutoff threshold. The training and test 
sets contain positive and negative examples, the positives being 
joke pairs that match, and the negatives being joke pairs that do 
not match.  

5.1 Training and Test Sets 
The samples are divided into ten groups to allow ten-fold cross 
validation. In order that the training and testing barrier be kept 
intact, no joke cluster contributes examples to more than one 
group. We also avoid letting any one large cluster dominate the 
examples, sampling no more than 15 positives and 15 negatives 
from any cluster.  

For any cluster, the positive examples are drawn from all pairs of 
jokes in the cluster. The negative examples have one joke in the 
cluster and one outside it. If the joke from outside the cluster were 
picked uniformly at random, the task would be unfairly easy; the 
pair of jokes would not be at all similar. So instead, we sample 
negatives so that they will be comparable in their ranks to the 
positives. That is, for each positive pair, we use one joke as a 
query, retrieve a ranked list of jokes, and record the rank (in that 
list) of the second joke. By repeating this with every joke as the 
query, we estimate a distribution of ranks of positives. Then, to 
generate negatives, we take one joke from the cluster, retrieve a 
ranked list of jokes, sample a desired rank from our distribution, 
and pick a non-matching joke from at or near that rank. In this 
way we create negative examples that are, in theory, difficult to 
distinguish from the positives.  

5.2 Symmetric Similarity 
We described KL divergence above. However, when the example 
at hand is a pair of documents a and b, with neither taking the role 
of query, it is better to measure their similarity using a symmetric 



score. We make the score symmetric by taking the average of both 
directions, that is, using:  
similarity = ½(KL(Ma || Mb) + KL(Mb || Ma)). 

It would have been possible to use the symmetric cross entropy 
instead. Since the values of the scores matter, not just the 
rankings, we choose KL divergence because it has a minimum of 
zero. For cross entropy, the minimum score (occurring for 
perfectly matching documents) is the entropy of the query, which 
varies by query. 

5.3 Experiments 
In total, we have approximately 600 data points, of which 58% are 
negatives. During the training phase, the classifier computes the 
similarity score for each pair, then it chooses a decision threshold 
to maximize its accuracy—the number of correct predictions—on 
the training data. We evaluate the accuracy for each fold of the 
test data and then compute an average across the folds. Table 2 
shows the accuracies achieved by the three main document 
models described above. 

Table 2. Classification accuracy of individual models. 

Document model Accuracy 

Baseline 0.749 

Annotations 0.773 

Punch line 0.801 
 

The first things to observe are that the accuracies are fairly high, 
and that the models that use joke structures have some advantage 
over the baseline. Also, there is diversity among the models; 
Table 3 shows how each model has some examples that only it 
predicts correctly. We further see that the models are erring on the 
side of caution by not recognizing positives when they appear.  

Table 3. Diversity among classification models. 

Document 
model 

Number of pairs 
only this model 
gets right 

Accuracy 
on 
negatives 

Accuracy 
on 
positives 

Baseline 4 0.91 0.52 

Annotations 13 0.91 0.59 

Punch line 56 0.90 0.66 
 

To take advantage of the diversity among the models, we try 
combining them using machine learning. We use the similarity 
scores from the models as inputs to a classifier and allow the 
classifier to make the prediction. We use Weka’s logistic 
regression tool [20]; its other classifiers performed similarly or 
worse. We test several combinations of features, beginning with 
the scores from the three models we have seen above. Next, 
hypothesizing that relative document lengths may be predictive, 
we add two more features: the ratio and average of the document 
lengths. Finally, we use as our features the scores from all 108 
model variations described in Section 4.1.4.  

The results of the classifiers are shown in Table 4. We see that the 
classifier that uses the set of three features (top line) achieves 

better performance than any individual model. Adding additional 
features does not help; if anything, it was useful to manually 
select the set of three features.  

Table 4. Classification accuracy of combination models. 

Features Number of 
features Accuracy 

Baseline, annotations, punch line 3 0.818 

Above, plus ratio and average of 
document lengths 5 0.802 

Various 108 0.801 
 

We assess significance using paired t-tests on the sets of 
individual predictions. At the p = 0.02 level, annotations beats 
baseline, and the best classifier beats annotations; however, for 
the punch line versus annotations and for the classifier versus 
punch line, they just miss significance, yielding p-values around 
0.06. 

It is surprising that the punch line model performs so well here; in 
light of the poor scores we will see for it in Section 6.2, it is also 
somewhat misleading.  Further analysis suggests that this model's 
high accuracy in classification is an artifact of the sampling 
procedure: by intent, we chose negative examples whose scores 
under the baseline model closely matched the scores of the 
positive examples.  As a result, the baseline model has difficulty 
distinguishing the classes. The annotations model has a similar 
property. However, the punch line model tends to give different 
scores than the other two; thus its positive and negative examples 
were not pushed together by the choice of samples, and it could 
outperform the other models in this setting. 

6. RANKING 
We next consider this “same jokes” task in a ranking setting. 
Ranking is a more appropriate setting for evaluating the task if we 
anticipate using the system to retrieve “more jokes like this.” 

6.1 Setup 
In this setting, we use one joke as a query, and we use one of the 
document models described earlier to rank all the documents in 
the collection. The relevant documents for this query are defined 
as those jokes in the same cluster. We measure average precision, 
recall at various cutoffs, and R-precision. We repeat this process 
for every joke in the cluster, and calculate the average of the 
measures for the cluster. After doing this for every cluster, finally 
we report the averages across all 60 clusters. 

6.2 Results 
The results of the ranking experiments are displayed in Table 5. 
We see that the order of performance is reversed from the 
classification setting; here, the baseline model performs best and 
the punch line model worst. This holds across all four measures. 
The differences between the baseline and annotations models are, 
however, not significant. 



Table 5. Ranking performance of individual models. 

Document 
model MAP R-precision Recall 

at 10 
Recall 
at 100 

Baseline 0.793 0.744 0.860 0.966 

Annotations 0.774 0.713 0.847 0.948 

Punch line 0.514 0.458 0.587 0.737 
 

One way to compare the performance of the models is with a 
scatterplot of their scores, as in Figure 4. The plots show how 
closely the annotations and baseline models track each other, as 
their scores lie near the diagonal (Pearson correlation = 0.84). 
They also show how the baseline model almost always gives 
better results than the punch line model. However, we can also see 
that for each alternative model, there are some clusters in which it 
soundly beats the baseline. This diversity suggests that again there 
is potential for improvement by combining the scores of the three 
models. 

 
Figure 4. Mean average precision of each joke cluster (one 
data point per cluster). Diagonal shown for reference. Top, 
baseline model versus annotations. Bottom, baseline versus 

punch line. 

6.3 Re-ranking 
To combine the models, we return to the approach from above: 
training a pairwise classifier using scores from the three models. 
The Weka classifier outputs a probability score, not just a binary 
decision, so we can use this score for ranking. In order to use a 
pairwise classifier in the ranking setting, where the query is fixed, 
we have two immediate possibilities. First, we could pair the 
query with every other document in the collection, one by one, 
and use the classifier’s scores to rank all the documents. Or, we 

could take some set of top documents from the baseline model 
and use the classifier to re-rank them. We take the latter approach, 
for efficiency reasons, and also to exploit the fact that the baseline 
classifier already has high recall. 

To choose the number of documents to re-rank, we plot in 
Figure 5 the recall curve as a function of the number of 
documents. The curve levels off by 500 documents, at recall = 
0.998. 

 
Figure 5. Recall of the baseline model, averaged over all jokes. 

In order to train a classifier to re-rank the top 500 documents, we 
must create a new training set reflecting the distribution where the 
model will now be applied. For the positives, we use all 442 pairs 
of jokes in all clusters, since we need all the positive examples we 
can get. To generate the negatives, we run the baseline ranking, 
identify the top 500 documents, and sample randomly from them. 
We use a ratio of about 1:2 for positives to negatives, which keeps 
the size of the training set reasonably small. (We do not expect it 
to be important to keep constant the ratio of positives to negatives 
from training to test sets since we are using the model’s output for 
ranking, as opposed to for classification.) 

To create training and test splits, we divide the data into 10 groups 
of clusters for cross validation. For each cluster, the training data 
are the positives and negatives from the queries in the other 9 
groups. 

Table 6 shows the results of using the classifier to re-rank the top 
500 documents. (The baseline model, when restricted to its top 
500 hits, gives the same scores as in Table 5.) This classifier, 
when used by itself, performs worse than the baseline. Once more, 
we examine the scatterplot of scores (Figure 6, top). This time we 
see that while the classifier does not perform as well as the 
baseline overall, it is a toss-up as to which works better for any 
particular cluster. This means that yet once again, we stand to 
benefit by combining these methods. 

Since the machine learning classifier has already been given the 
baseline score as a feature, we create this final combination by 
simply linearly interpolating between the output score of the 
classifier and the baseline score, giving them equal weight. This 
resulting ranking turns out to be significantly better than any of 
the others. The bottom of Figure 6 shows how, with the 
interpolated classifier, the mean average precision of almost every 
joke cluster improves compared to the baseline. 



Table 6. Ranking performance using classifier to re-rank. 

Document model MAP R-precision Recall 
at 10 

Recall 
at 100 

Baseline top 500 
re-ranked with 
classifier 

0.749 0.684 0.841 0.965 

Baseline top 500  
re-ranked with  
(0.5 classifier + 
0.5 baseline) 

0.822 0.772 0.882 0.977 

 

 
Figure 6. Mean average precision of each joke cluster (one 

data point per cluster). Top, baseline model versus classifier. 
Bottom, baseline versus interpolated classifier. 

We performed a few experiments analyzing the contribution of 
the classifier, and in particular, testing whether the improvement 
in score could be achieved in some simpler way. The results of 
these experiments are shown in Table 7. One method for 
improving retrieval in many situations is to expand the query 
using pseudo-relevance feedback. We created such an expanded 
query using linear interpolation between the original query and 
the top t documents [23]. We used t = 2, and weighted the original 
query and the new terms 0.4 and 0.6, respectively. Its performance 
is virtually identical to the baseline. 

Next, we investigated whether the boost from the classifier could 
be due to it using the symmetric version of KL divergence. For 
this run, we use the baseline model but use the symmetric version 
of the score. This by itself is clearly not helpful either. 

Table 7. Other experiments. 

Document model MAP R-precision Recall 
at 10 

Recall 
at 100 

Baseline with 
pseudo-relevance 
feedback 

0.795 0.740 0.851 0.974 

Baseline using 
symmetric score 0.594 0.534 0.711 0.841 

 

7. ANALYSIS 
From these experiments we have learned that the annotations 
model performs fairly closely to the baseline bag of words model, 
while the punch line carries differing information.  In the 
classification setting, the task is difficult for the baseline by 
design, so the punch line model scores well through its contrast.  
In the ranking task, where the comparison is more fair, the 
baseline prevails over the other two models. In both settings, we 
achieve the best results by combining the three document models.  

We gain some insight into the utility of the three models by 
looking at specific queries where they performed differently. Our 
intuition was that since words from the query would not 
necessarily appear in the relevant documents, the baseline model 
would have low recall. For the most part, it seems that if a joke is 
sufficiently long, certain words actually do appear in all its 
versions. In the challenging-looking joke cluster from Figures 1–
3, for example, the baseline model gives a reasonable MAP for 
ranking of 0.62; the annotations model scores mildly higher. 
When a joke is short, the baseline model may still perform well 
provided there are distinctive words that appear in every version. 
For instance, the unusual words “trampoline” and “tire gauge” in 
the joke versions in Figure 7 allow the baseline model to retrieve 
these clusters perfectly. 

There is a mild indication that joke length correlates with the 
success of the annotations model. In particular, for the cases 
where the annotations model works better than the baseline, the 
joke is either short (under 50 words) or long (over 120). For jokes 
of medium length, either the two models give comparable scores, 
or the baseline model wins. We can explain the success of the 
annotations model at short jokes by referring back to the example 
from Section 4.1.3 involving “skid marks;” in cases such as this, 
there are not always enough words preserved for the baseline 

Figure 7. Joke clusters easy for the baseline. 

What's the difference between a viola and a trampoline? You 
take your shoes off to jump on a trampoline. 

Q:  What's the difference between a viola and a trampoline? 
A:  You don't have to take your shoes off before you jump on 
a viola. 

What's the difference between a bassoon and a trampoline? 
You take off your shoes when you jump on a trampoline. 
 
Q: How does a blonde measure his/her IQ?   
A: With a tire gauge! (da da dum)   

Q: How do you measure a blonde's intelligence?  
A: Stick a tire pressure gauge in her ear! 



model to use. For instance, in the example in Figure 8, the 
annotations model scored perfectly. The baseline model had a 
MAP of 0.5; it found the correct documents by rank 2, but 
retrieved other tiger and polar bear jokes (respectively) as its top 
matches.  

As for punch lines, when the punch lines match closely, this 
seems to be a sufficient condition for the jokes to match. 
However, this only happens for some jokes. 

Overall, it seems as though every joke has some invariant phrases. 
However, it is difficult to describe, without actually looking at the 
joke, which phrases those might be. This is why using a 
combination of methods makes sense: each deals well with certain 
types of jokes. 

8. DISCUSSION 
In terms of other possible methods for recognizing joke variants, 
we considered viewing variants as if they were translations into 
other languages and then learning a translation model of common 
word substitutions [6]. This is similar to Berger and Lafferty’s use 
of translation models between (English-language) queries and 
documents, designed to help connect words having the same 
meaning or topic [4]. However, those models require a large 
amount of training data (matched documents), whereas our set of 
labeled documents, on the contrary, is quite small. 

The idea that most joke clusters have particular invariant words or 
phrases relates to the idea of “key” or “core” concepts, introduced 
by Allan et al. [1] and recently further developed for use with 
verbose queries [3]. Even absent any intuitions about jokes, this 
“key concept” idea would seem relevant because our queries are 
long—entire jokes; Bendersky and Croft argue that extraneous 
concepts tend to hinder retrieval performance [3]. It is not clear 
that concepts which are key in standard text—e.g., proper 
nouns—would play the same role in jokes, nor that we would 
have enough data to learn to identify the important terms. 
However, it would be interesting to try modifying these 
techniques for jokes. 

One possible approach for handling queries whose terms may not 
appear in the relevant documents comes from work on “vague 
queries.” This was introduced by Motro for the database 
community [15], but it could be seen as a type of query expansion. 
The idea is that if a query returns no matches, it can be broadened 
by examining the closest matches in the corpus. For structured 
databases, refining the query requires having an appropriate 
similarity measure for each type of field—for instance, geographic 
proximity for cities but temporal distance for times. Zhu et al. 
pose an analogous problem in information retrieval [24]. They 
describe the challenge of searching for “that book about the 
guitar-playing sergeant,” when the desired title is actually 
“(Captain) Corelli's Mandolin.” Since the data type in this case is 
words, the work uses a similarity measure defined over WordNet 
to suggest candidate modifications of the query terms. Among the 

many possible expansions or substitutions for the query, modified 
queries are judged good (as opposed to vague) if their terms 
frequently appear close together in the corpus at large. In an 
earlier initiative, Woods et al. address this same situation, dubbing 
it the “paraphrase problem” [21], [22]. Their approach involves 
building a “conceptual index,” a large semantic taxonomy 
describing relationships among words and phrases. Given a query, 
the system searches among candidate modifications and 
generalizations of the query terms. The quality of a new query is 
judged both by the proximity of the terms within the retrieved 
documents and also by the similarity of the new query to the 
original. 

These approaches could be promising for querying for jokes, but 
we see a few drawbacks. First, they would be useful for retrieving 
some matches to a joke, but since they choose combinations of 
new query terms that are popular in the corpus, their recall could 
be low. Second, even for short queries, there might be an 
intractably large search space of plausible substitutions in the 
jokes domain. To state this more plainly, jokes are not just 
paraphrases. Paraphrasing might in fact describe our difficulties in 
searching for song lyrics and quotations. But for jokes and 
puzzles, it will not be enough to consider synonyms and related 
terms; entities can shift broadly in different versions, and large 
swaths of details can be modified or dropped. 

It is an open question whether, and to what extent, semantic 
processing needs to be added to statistical models of language 
[22].  For identifying “the same” joke, intuition suggests that we 
would need, at a minimum, information extraction for all the 
entities, events, and logical relations (each possibly implicit) in a 
joke—capabilities far beyond today's reach. Yet in many cases in 
our corpus, it seems to be raw words that matter, essential phrases 
like “skid marks.” Perhaps such words are informative because 
the corpus is of limited size, because distinctive phrases tend to be 
preserved in transmission, or because these phrases in themselves 
define the identity of the joke. Regardless, jokes are yet another 
domain where the bag of words model performs surprisingly well. 
Even when they are combined with our other models, however, 
there is much room left for improvement. 

We have used knowledge of a particular domain to build a 
retrieval system that performs better at ranking and classification 
than the standard model does in this domain. Along the way, we 
have used the domain, humor, to argue for alternative definitions 
of similarity between documents: that they exist and that they 
matter. In particular, documents in some domains are difficult to 
search for at present because one cannot be certain of any words 
the item will contain; only their relationships count.  

For a person learning a foreign language, the standard advice goes 
that they will have mastered it only when they can tell jokes in the 
language. For computers processing human language, perhaps 
humor will serve as that same challenge and yardstick. 
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Figure 8. Joke cluster easy for annotations, difficult for 
the baseline. 

Q: What's black and white and bounces?  
A: A polar bear on a pogo stick! 

Q: What's striped and bouncy?   
A: A tiger on a pogo stick! 
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