
Supplemental Material to
“Classifier-Adjusted Density Estimation for

Anomaly Detection and One-Class Classification”

8 Implementation Details

8.1 Density Estimation In our implementation of
the kernel density estimator (KDE), we fit a univariate
KDE to each attribute independently. The bandwidth
for each dimension is chosen using a plug-in selector,
via the ks package in R [1], and the kernel itself is
Gaussian. The joint density estimate is defined to be
the product of the independent marginal densities. A
common alternative formulation is to use one full-
dimensional Gaussian kernel per data point. Our KDE
is equivalent to a special case of that formulation, one
in which we constrain the kernel’s covariance to be
diagonal and choose the bandwidth for each dimension
as above. When sampling from the KDE, we use an
efficiency trick suggested in Hastie et al.: we draw each
attribute not from its corresponding KDE but directly
from the training data [2].

For nominal attributes, we provide only two
marginally independent options. When the density esti-
mate is described as uniform, it is also uniform for the
nominal attributes. When it is described as Gaussian
or KDE, we use a frequency estimate of the attribute
values. For density estimates that combine attributes
independently, discrete attributes can be readily mixed
with continuous.

The Bayesian network implementation we use is R’s
bnlearn package [6]. This package does not handle mixed
attribute types, so for data sets containing both types,
we make the simplifying assumption that the two sets of
attributes are independent: we build one Bayes net for
numeric attributes and one for nominal, then multiply
the probabilities together.

8.2 Local Outlier Factor With LOF, we
use Weka’s default settings: minPtsLB = 10,
minPtsUB = 40. For bagged LOF, we use the settings
described by Lazarevic and Kumar [3]: we create 10
bags, each using a random selection of bd

2c to d − 1
attributes, where d is the original dimensionality.
We aggregate the scores using their Cumulative Sum
approach, in which the final score for an item is the
sum of its scores in the 10 bags.

LOF is usually described as an unsupervised ap-
proach, run on a mixture of normal and anomalous data.
To make a fair comparison with CADE, we give both
methods the same “training data” in every experiment.
For CADE, this training data is used in conjunction
with generated artificial anomalies for training the clas-
sifier. For LOF, these instances are the ones used as
nearest neighbors by subsequent query points.

9 Assembling CADE Components

While one of the strengths of CADE is its ease of con-
struction from commonly available tools, there are a
number of easily-overlooked details. This section de-
scribes some considerations for making the components
function well together.

9.1 Classifier Properties It is important that the
classifier be able to learn a class distinction from the
training data. Obviously, a near-random classifier will
not be a useful contribution to the density estimate.
Unfortunately, it is less obvious how easy it is to create
such a near-random classifier in this setting. Section
2.1 mentioned one way this can happen: if the initial
density estimate exactly matches the positive data. In
that case, an ideal classifier would predict 0.5 on all test
data, but a non-ideal classifier may overfit and make
sub-random predictions. Another way this can happen
is when (a) attribute by attribute, the initial density
estimate matches the training data exactly, and (b)
the classifier only considers one attribute at a time.
Property (a) holds when, for the artificial negatives,
we sample each attribute directly from the training
data, as we do with KDEs. Property (b) holds with
classifiers such as naive Bayes, logistic regression, or
the C4.5 decision tree (when choosing its root node).
With these combinations, we found poor performance.
Beyond avoiding these particular cases, we suggest a
robust way to check if the classifier is helpful: calculate
the classifier’s performance at separating the training
classes (on a held-out sample). If the performance is
near-random or below, the classifier adjustment to the
initial density estimate is likely to be detrimental.

Another potential pitfall is the use of classifiers with
good predictive performance but poor probability esti-
mates. With some classifiers, we observed large blocks
of tie scores in the classifier’s predictions. Since we eval-
uate performance based on the position of the anomalies
within the ranking, rankings with large numbers of ties
are at a disadvantage. Although both KNN and ran-
dom forest have been found to give consistent estimates
[4], the initial settings we tried did not. With KNN,
an initial k = 20 was far too small, and with random
forest, when using 100 trees grown to purity (with no
pruning or minimum leaf size), the average of the trees’
probability estimates was often exactly 0 or 1. Experi-
menting informally, we found better results with KNN
using k = 200 and weighting neighbors by the inverse of
their distance. With random forest, increasing the mini-
mum leaf size had little effect, but backfitting helped. In
backfitting, after the trees are grown to purity, a held-
out fraction of training data is added to the trees, not
changing their structure but adjusting the probability
distributions at the leaves. These changes reduced the
number of ties and to some extent improved AUC. More
generally, we conjecture that producing more consis-
tent classifier predictions—beyond merely avoiding tie
scores—will improve performance when the classifiers
are used with non-uniform density estimates.

We also observe that the optimal settings for clas-
sifiers vary with the distribution of artificial negatives.
As an extreme example, with decision trees, using C4.5
with Laplace smoothing [5] gives better results than
CART when artificial negatives are uniform, but worse
when the artificial negatives are sampled from the train-
ing data. In the latter situation, C4.5 builds no trees
at all, finding no features significant, but CART builds
useful trees.

9.2 Properties of Naive Bayes If the naive Bayes
classifier is ineffective in combination with a KDE
initial density, its behavior with a uniform or Gaussian
density is oddly familiar. As remarked above, naive
Bayes treats each attribute independently. For each
attribute, it estimates the distributions of the positive
and the negative training data. To compute the odds
term needed in Eq. (2.1), P (C=T |X)

1−P (C=T |X) = P (C=T |X)
P (C=A|X) , it

takes the ratio of the two distributions at the location
of the test point.

We found the best performance with naive Bayes
by enabling Weka’s option for kernel density estima-
tion. When the initial density is uniform, the two distri-
butions estimated by naive Bayes are then kernel den-
sity estimates of the positive data and of the uniformly
distributed artificial negatives. The odds term, once
all dimensions have been multiplied together, comes

out to KDE(X|T)
P (X|A) . Here, KDE(X|T) is a naive-Bayes-

generated kernel density estimate of the training data,
and P (X|A) is (approximately) a constant that will can-
cel out the matching term in Eq. (2.1).

The result of this is that the score CADE produces
using Uniform + NB is identical, apart from artifacts
of sampling and estimation, to that produced by a
KDE initial density (with no classifier adjustment). The
same should hold with a Gaussian (or any marginally
independent) initial density, even though P (X|A) is no
longer constant: Gaussian + NB should be equivalent to
an unadjusted KDE. If the naive Bayes implementation
used a Gaussian estimate internally instead of a KDE,
CADE’s output with Uniform + NB or Gaussian + NB
would match the unadjusted Gaussian density estimate
instead. In practice, we did generally observe Uniform
+ NB to match the unadjusted KDE; however, contrary
to the claim above, Gaussian + NB performed worse.

9.3 Combining Probability Estimates One way
to lose information when multiplying terms together is
to allow any of the terms to be zero or infinity. A zero
can originate either from the classifier (P (C = T |X) =
0) or from the density estimate (P (X|A) = 0). When
marginal density estimates are combined independently,
a zero can come from any dimension and is more likely
as the dimensionality increases. An infinity is caused by
the classifier predicting P (C = T |X) = 1. These values
cause the rest of the terms to be ignored and result in
unnecessary ties in the ranking. To avoid this problem,
we smooth the values before multiplying them, changing
zeros and ones to ε and (1 − ε), respectively, choosing
ε as a function of the minimum and maximum values
otherwise seen in the data. One benefit of smoothing
is that, when the density estimate is calculated as a
product of marginals, items having P (X|A) = 0 in k
dimensions are generally scored as more anomalous than
those having P (X|A) = 0 in k − 1 dimensions. In our
experiments, smoothing rarely hurts performance and
in some cases improves it greatly.

Overall, when choosing components for CADE, a
uniform initial density is the simplest to implement, and
it only requires the classifier to produce a good ranking,
not a consistent probability estimate. On the other
hand, with a more complex initial density estimate, the
classifier can focus on deviations from that estimate, and
if the classifier predicts tie scores, the density estimate
term will give them an ordering.

10 Additional Experiments

Section 5.1 showed the robustness of CADE and LOF
when faced with irrelevant attributes. In that exper-
iment, each set of training data was sampled from a

0.
2

0.
4

0.
6

0.
8

0 20 40 60 80
Number of added noise attributes

Sp
ea

rm
an

's
ra

nk
 c

or
re

la
tio

n
w

ith
 tr

ue
 d

en
si

ty

Bagged LOF

Uniform + KNN

KDE + RF

Uniform + RF

Bayes net + RF

Figure 5: Synthetic experiments evaluating performance
as uniform noise attributes are added. Experimental
setup is the same as for Fig. 3, but test data is drawn
from a uniform distribution that matches the range of
the positive data.

distribution comprising a five-dimension Gaussian [Ed.:
mixture of three Gaussians] plus noise attributes, and
each test set was sampled from the same distribution
as its training set. In this section we repeat this experi-
ment using a different test set. Once again, the ground
truth ranking of points is defined as their density ac-
cording to the training distribution. But this time, the
test set—the data being ranked—is sampled uniformly
from a hypercube defined by the range of training data.
Such a test set contains more low-density points than
before. Fig. 1 shows the results of this experiment. Sim-
ilar to Fig. 3, LOF degrades the most steeply, followed
by Uniform + KNN, and the random forest methods
are most robust. However, in this setup LOF actually
performs better than CADE when there are few noise
attributes. In addition, Bayes net + RF now performs
best as noise attributes are added, above both KDE and
Uniform.

References

[1] T. Duong. ks: Kernel density estimation and kernel
discriminant analysis for multivariate data in R. Jour-
nal of Statistical Software, 21(7):1–16, 10 2007.

[2] T. Hastie, R. Tibshirani, and J. H. Friedman. The Ele-
ments of Statistical Learning: Data Mining, Inference,
and Prediction. New York: Springer-Verlag, 2001.

[3] A. Lazarevic and V. Kumar. Feature bagging for
outlier detection. In KDD ’05: Proceedings of the
eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pages 157–166,
New York, NY, USA, 2005. ACM.

[4] J. D. Malley, J. Kruppa, A. Dasgupta, K. G. Malley,
and A. Ziegler. Probability machines: Consistent prob-
ability estimation using nonparametric learning ma-
chines. Methods of Information in Medicine, 51(1):74–
81, 2012.

[5] F. Provost and P. Domingos. Tree induction
for probability-based ranking. Machine Learning,
52(3):199–215, 2003.

[6] M. Scutari. Learning Bayesian networks with the
bnlearn R package. Journal of Statistical Software,
35(3):1–22, 2010.

