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Classifier adjustment often 
improves upon initial density 
(otherwise has no effect). 
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Classifier-Adjusted Density Estimation for  
Anomaly Detection and One-Class Classification 

School of Computer Science 
University of Massachusetts Amherst 

Summary 
•  High-quality anomaly detection is possible in multivariate data with a relatively simple 

method that estimates a joint probability function. 
•  Experimental evidence across a range of data sets shows CADE to be competitive and 

scalable. 
•  Within CADE, simple components often work well: 

•  Marginally independent initial density estimates 
•  Adjusted by random forest or k-nearest neighbor classifier 

•  Probability density estimators are more robust than local outlier factor methods to the 
challenge of irrelevant attributes. 
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Method Overview 
•  Classifier-adjusted density estimation (CADE) detects anomalies by identifying low-

probability instances in large, multivariate data sets. 
•  CADE estimates the joint probability density function of its training data by using a 

classifier to “correct” a naive density estimate. 

1. Start with unlabeled 
data. 

2. Label original data positive 
(non-anomalous). Construct 
a naive density estimate of 
the positives ! P(X | A). 

3. Generate pseudo-
negatives (pseudo-
anomalies) from P(X | A). 

4. Train a classifier to 
distinguish the positives 
from the pseudo-negatives. 

5. Combine classifier’s prediction with 
initial density estimate to compute a final 
density estimate ! P(X | T) 

Classifier	
  predicJon	
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[Hempstalk,	
  Frank,	
  WiUen.	
  PKDD	
  2008]	
  

Experiments for semi-supervised 
anomaly detection: 
•  13 UCI datasets ! 76 class 

divisions (positive vs. anomalous) 
•  5 classifiers (Weka) 
•  4 initial density estimates 
•  10-fold cross validation 

Pseudo negatives 
(pseudo anomalies)

Initial density 
estimate

CADE
Positives

Estimate 
joint 

density

Combined data
Learn 

classifier

Training data

Classifier

Workflow 

6. Apply final density estimator 
P(X | T) to unlabeled data to 
identify anomalies. 

Algorithm Components and Performance 
Many density estimate/classifier combinations perform well. 

Average area under ROC curve over 76 class divisions of UCI data 
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As correlation among features 
increases, the classifier adjustment 
becomes increasingly useful. 
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Comparison with Local Outlier Factor 
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Robustness to irrelevant attributes: 
when uniform noise attributes are 
added, LOF degrades quickly. 
CADE is much more resistant. 
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[Breunig,	
  Kriegel,	
  Ng,	
  Sander.	
  SIGMOD	
  2000]	
  

Unsupervised Runs on Large Data Sets 
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Employee 

Average area under ROC curve over 6 months x 10 runs each 

Density Estimate:
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Shuttle 

Average area under ROC curve over 5 class divisions x 10 runs each 

Data Set Employee 

Source 

Collected for DARPA 
ADAMS project on insider 
threat detection. Describes 
computer activities of ~5500 
employees of a real 
company. 

# features 88 

# instances 108,215 to 133,770  
(6 separate months) 

# anomalies 8 to 98 

Avg. runtime 368.1 sec 

Data Set Shuttle 
Source UCI 

# features 9 

# instances 45,596 to 54,489 

# anomalies 10 to 8903 

Avg. runtime 104.3 sec 
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CADE performs 
competitively with LOF 
(varies by data set). 
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P(
+)=
.99

P(+)=.65

P(+)=.02

P(+)=.02


