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ABSTRACT 
This paper reports on methods and results of an applied research 
project by a team consisting of SAIC and four universities to 
develop, integrate, and evaluate new approaches to detect the 
weak signals characteristic of insider threats on organizations’ 
information systems. Our system combines structural and 
semantic information from a real corporate database of monitored 
activity on their users’ computers to detect independently 
developed red team inserts of malicious insider activities. We 
have developed and applied multiple algorithms for anomaly 
detection based on suspected scenarios of malicious insider 
behavior, indicators of unusual activities, high-dimensional 
statistical patterns, temporal sequences, and normal graph 
evolution. Algorithms and representations for dynamic graph 
processing provide the ability to scale as needed for enterprise-
level deployments on real-time data streams. We have also 
developed a visual language for specifying combinations of 
features, baselines, peer groups, time periods, and algorithms to 
detect anomalies suggestive of instances of insider threat 
behavior. We defined over 100 data features in seven categories 
based on approximately 5.5 million actions per day from 
approximately 5,500 users. We have achieved area under the ROC 
curve values of up to 0.979 and lift values of 65 on the top 50 
user-days identified on two months of real data. 

Categories and Subject Descriptors 
H.2.8 [Information Systems]: Database Applications – data 
mining. 

Keywords 
Insider Threat, Anomaly Detection 

1. INTRODUCTION 
Insider threat (IT) is a major problem for many organizations, 
including industry and the U.S. Government. [27] ITs may 
include intentionally malicious activities by authorized users, such 
as information system sabotage, intellectual property (IP) theft, 
fraud, and national security crimes (e.g., disclosure of classified 
information), as well as unintentional threats introduced 
inadvertently by careless use of computing resources. [3]  
 IT detection is more difficult than many other anomaly 
detection (AD) problems not only because insiders are 
knowledgeable about an organization’s computer systems and 
procedures and authorized to use these systems, but also, and 
more important, because malicious activity by insiders is a small 
but critical portion of their overall activity on such systems. IT 
detection suffers from the technical challenges of very low signal-
to-noise ratios (i.e., they are extremely rare but exceedingly 
important events) and dynamic threat scenarios (i.e., they are 
always changing because malicious insiders actively attempt to 
avoid being caught and also because computing and 
organizational environments evolve). IT instances consist of 
complex contextual combinations of activities, each of which may 
be authorized and legitimate when performed in different contexts 
or combinations. Often, much information necessary to fully 
discriminate between ITs and legitimate activities – by providing 
the context that explains apparently anomalous computer usage 
behavior – requires additional data sources such as employee 
personnel records, organizational charts, project assignments, 
work hours and locations. Furthermore, data about individuals are 
often protected from disclosure due to privacy needs. 
 To evaluate the feasibility of automated detection of ITs from 
computer usage data, Defense Advanced Research Project’s 
Anomaly Detection at Multiple Scales (ADAMS) program [6] has 
collected a database of monitored computer usage activity in 
business organization, whose identity is not allowed to be 
disclosed publicly, of approximately 5,500 people. All data are 
used with permission in a closed testbed facility subject to all 
necessary privacy protections. Data are collected using a 
commercial tool called SureView®(Raytheon Oakley Systems, 
Inc.) [21], currently used by commercial and government 
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organizations to monitor suspicious individuals or specific 
targeted actions. SureView is resident on user workstations and 
captures user actions such as logins, file accesses, emails, instant 
messages, printer usage, browser usage (including URLs visited), 
process usage, etc. User identifications are anonymized by 
hashing. All collected data are treated as legitimate activity, a 
valid assumption given the rarity of malicious insider activity in 
the organization. 
 To provide realistic ground truth instances of ITs, an 
independent expert red team (RT) led by CERT develops 
scenarios of IT activity based upon case studies of known insider 
attacks [3][16] and augments the database with instances of such 
scenarios superposed on (sets of) users whose normal activity 
corresponds to the background characteristics of users involved in 
each scenario. The signal-to-noise ratio is approximately 0.2% of 
users and 0.08% of user-days. Scenarios are made available to 
researchers monthly, with “answer keys” consisting of identifiers 
of the artificially malicious users and descriptions of the scenario 
activities provided only after detection results have been 
generated. Each month’s data consists of approximately 1,000 
actions per day per user, or about 5.5 million records per day. 

2. APPROACH AND METHODS 
A useful deployable IT detection system encompasses multiple 
data sources and multiple detection methods working together to 
identify and explain anomalies in context, with sufficient lift to 
permit human analyst review of all anomalies and action on all 
significant IT instances. This vision, based on how complex event 
detection systems operate in real environments, motivates and 
guides our work.  
 Our ADAMS project, called PRODIGAL (PROactive Detection 
of Insider threats with Graph Analysis and Learning), has 
developed, applied and evaluated multiple AD algorithms and 
supporting technologies based on models of different aspects of 
user behavior; over 100 semantic (i.e., domain-knowledge-based) 
and structural (graph-based) features; a schema representation for 
comparing results of different AD algorithms; a visual AD 
language; data extraction, loading, and transformation 
components; and an integrating software framework for 
experimentation. While not yet ready for deployment, we have 
achieved encouraging results that demonstrate the ability to detect 
the phenomena of interest in two months’ worth of real data. 

2.1 Concepts and Architecture 
PRODIGAL supports regular data load and transform processes 
that enable feature computation, anomaly detection and results 
scoring from three types of starting points. 
2.1.1 Feature Construction  
Feature definition combined domain knowledge and observable 
data knowledge. A retired operations officer from the U.S. 
intelligence community with expertise in how IT behaviors 
manifest in computer usage data identified three goals of 

malicious insider activity related to information or systems: (1) 
destruction, (2) misuse or corruption, and (3) theft. Each goal has 
specific activities associated with five stages: (1) exploration, (2) 
experimentation, (3) exploitation, (4) execution, and (5) 
escape/evasion. These goals and stages cover ranges of behavior 
such as malicious insiders acting alone or in groups (with 
complicit and/or non-complicit group members) across time 
periods ranging from days to months. Corresponding observables 
in the SureView data were identified, and over 100 aggregate and 
ratio features in seven categories were deemed worthwhile to 
compute. (See Table 1.) 
 Relationship graphs from the base computer usage record were 
derived, including the email network among users, email 
addresses, computers, and messages; the printer network among 
users, printers, and computers; the web network among users, 
computers, domains, and individual URLs; the logon-logoff 
network between users and computers; and graphs composed of 
combinations of two or more of these networks. 
 We also explored a range of feature normalizations: raw values 
(r); median-difference and percentile of all users on all days in 
time period (am & ap); median-difference and percentile of all the 
user's days in time period (um & up); median-difference and 
percentile of all users on same day (mp & dp); median-difference 
and percentile of all users in group i on same day (idm & idp); 
and median-difference and percentile of all users in group i’s days 
in time period (mp & ip). Intuitively, for a given feature: 
normalizing each day’s value to all the user’s days should 
highlight unusual days; normalizing each day’s value to all users 
on that same day should dampen day-to-day, across-the-board 
variations; normalizing each day’s value to a user’s group should 
heighten variation from peers. Unlike median-difference 
normalization, percentile normalization is insensitive to distant 
outliers. The relationship between these normalizations is 
illustrated in Figure 1. We found that percentile normalization by 
each user’s days (up) gave the best results on our collected data.  
2.1.2 Anomaly 
Schema 
Representation 
We designed and 
implemented a 
common data structure 
to capture descriptions 
and results of every 
AD experiment. Table 
2 depicts this data 
structure. For each 
run, we allow 
algorithms to compute 
a raw score, an 
ordered ranking of all 
entities, a normalized 

Table 1: Feature Categories 
Type # Examples 
Email 18 Count of attachments on sent emails 
File 28 Count of file events to removable drives 
Group 11 Shared printers 
Login 4 Count of distinct workstations logged onto 
Printer 9 Count of print jobs submitted 
URL 13 Count of Blacklist events 
Ratio 28 Ratio of file events on removable drives to all file events 

Ratio of URL uploads to URL downloads  
Ratio of distinct removable drives to URL up/down loads 

 

 
Figure 1: Feature Normalizations 

Table 2: Anomaly Detection Data 
Structure 

ResultScore  ResultMetadata  
runID (KEY) runID 
flowID (KEY) flowID 
alfoID (KEY) algoID 
dataTypeID (KEY) dataTypeID (KEY) 
nodeID entityXtent (KEY) 
rawScore [optional] featureID [optional] 
normScore EntityTemp 
rankedScore popXtent 
Rank popSubXtent 
endDate popTemp 
analystScore scoreMean 
hasAnalystScore scoreStdev 
analystUpdateDate scoreCount 
 parameters 
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score, and percentile (ranked) scores. The raw scores may be on 
different scales and difficult to combine across algorithms. 
Normalized scores and ranks enable us to compare scores across 
algorithms. Distributional information such as mean and standard 
deviation allows us to determine degrees of anomaly.  
2.1.3 Starting Points 
PRODIGAL’s AD methods serve as the first stage in a multi-
layered detection process [26], leading to further data acquisition 
and analysis. Three kinds of starting points, all of which use some 
sort of domain knowledge, are employed. 
• Indicators – single observables or counts, known or suspectd to 

correlate with IT activities, but not necessarily tied to specific 
IT scenarios 

• Anomalies – unusual patterns, typicaly high-dimensional, 
resulting from AD algorithms working over vectors of features, 
graphs of relationships, or sequences of activities 

• Scenarios – matches of specifically designed patterns that 
correspond to known or suspected computer usage activities. 

We constructed several scenarios from documented patterns of 
known malicious insider behavior. Detectors for these patterns 
were implemented in the PRODIGAL framework using available 
features, indicators, and outlier detection algorithms, as well as 
peer groups discovered in the cyber activities by graph-based 
community detection algorithms. A detailed example is found 
later in this paper. Table 3 lists the scenarios with the indicators 
and anomalies utilized by each. 

2.2 Novel Algorithms 
Multiple AD algorithms based on suspected scenarios of 
malicious insider behavior, indicators of unusual activities, high-
dimensional statistical patterns, temporal sequences, and normal 
graph evolution were developed and evaluated. Algorithms and 
representations for dynamic graph processing provide the ability 
to scale as needed for enterprise-level deployments on real-time 
data streams. Each of the algorithms is based on the idea that AD 
consists of comparing the observed data to data that would result 
from entirely “normal” behavior. The algorithms differ not only 
according to what aspects of normal behavior they model, but also 
to the techniques they use to determine if observations differ from 
normal and the form of their output. In addition to the AD 
algorithms, we include descriptions of novel supporting 

algorithms that compute relevant peer groups such as those that 
perform community detection based on the graph of user 
interactions and others that provide the foundation necessary for 
scaling-up to a real-time deployed system in an organization of 
several 100k people. 
2.2.1 Relational Pseudo-Anomaly Detection (RPAD) 
RPAD learns a model of normal behavior by first taking a sample 
of the observed data instances, treating them as non-anomalous, 
and constructing an equal number of pseudo-anomalies. Pseudo-
anomalies are drawn from a joint distribution in which every 
feature is drawn independently from its marginal distribution. 
RPAD constructs a classifier to distinguish the observed data 
instances from the pseudo-anomalies.  When given a new 
instance, RPAD combines the classifier’s prediction with the 
pseudo-anomaly distribution to determine whether the instance is 
anomalous. This approach produces a representation of the joint 
distribution that is sufficient for anomaly detection and that is 
highly efficient to learn and apply [13][14].  RPAD learns the 
classifier and assesses all entities in less than 10 minutes on a data 
set of 131,729 entities with 83 features, and it outputs a score 
corresponding to the degree of anomalousness of an entity extent. 
2.2.2 Relational Density Estimation (RDE) 
RDE is a simple estimator of joint probability that assumes feature 
independence.  Each marginal distribution is modeled using a 
kernel density estimator, and the joint probability is assumed to be 
a simple product of these marginal distributions.  Anomalous 
points are those that have low probability estimates under this 
joint distribution.  The probability estimates themselves are biased 
when the independence assumptions are violated, although 
rankings can still be accurate despite these biases. As with RPAD, 
the resulting estimator of the joint distribution is efficient to 
construct and apply, although its performance is generally below 
that of RPAD. 
2.2.3 Gaussian Mixture 
Model (GMM) 
A GMM models the density of 
the data in feature space using a 
weighted sum of Gaussians. A 
data point is ranked as an 
anomaly based on its modeled 
density (lower density meaning 
more anomalous). For instance 
in Figure 2, data are input to the 
algorithm as a set of feature 
vectors (shown as points). The 
model is trained using the EM algorithm [7], and the fitted 
Gaussians are shown as ellipses. The 20 lowest-density points are 
shown in black. To speed up training, we implemented an 
incremental algorithm [20]. The number of Gaussians k is chosen 
via cross-validation. 
2.2.4 Ensemble Gaussian Mixture Model (EGMM) 
Figure 2 illustrates that a single GMM can have gaps between the 
Gaussians, and it will underestimate the density in those regions. 
We address this by training an ensemble of GMMs. Ensembling is 
a general tool for improving learning methods [8, 29]. Each GMM 
is trained on a bootstrap replicate of the original data, and we also 
vary the number of components k, which eliminates the need to 
choose a specific k. EGMM discards individual GMMs that do 
not achieve a minimum likelihood. The fitted density is the simple 
average of the densities of the individual models. The user must 

Table 3: Threat Scenarios 
Name  Distinguishing Indicators/Anomalies 
Saboteur   Indicators: URL; File; Logon 

 Anomalies: File accesses in relation to peer 
group in LDAP  

Intellectual 
Property (IP) 
Thief-Ambitious 
Leader 

 Indicators: URL; File; Printer; Login; Email 
 Anomalies: File accesses and email 

communication graph in relation to peer group 
(manager) in LDAP  

Intellectual 
Property (IP) 
Thief-Entitled 
Individual 

 Indicators: URL; File; Printer; Login; Email 
 Anomalies: File accesses compared to peer 

group (technical) in LDAP 

Fraudster  Indicators: Login; processes; files; and URL   
 Anomalies: Email and URL compared to 

groups (non-technical)  
Careless User   Indicators: File, Email, URL, Process 

 Anomalies: Processes run compared to user and 
LDAP (function) group 

Rager  Indicators: Email, IM, Login 
 Anomalies: sentiment and topics in emails sent 

 

 
Figure 2: GMM with 3 

components.  
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specify the number of models to fit, the range of k values to try, 
and the minimum likelihood threshold. The results are relatively 
insensitive to these choices [5]. 
2.2.5 Repeated Impossible Discrimination Ensemble 
(RIDE) 
Suppose that we randomly partition the data into two equal sets (A 
and B) and then apply a supervised learning algorithm to attempt 
to discriminate A from B. By construction, A and B have the same 
probability distribution, so it is impossible to tell them apart. 
However, flexible machine-learning algorithms can be encouraged 
to overfit the data and find ways of discriminating some points in 
A from B. The key claim of RIDE is that outlier points are easier 
to discriminate at random from other points [5]. Hence, if—
across many random A/B splits—a point x is persistently overfit, 
then that point is ranked as an anomaly. Specifically, we employ 
flexible logistic regression (boosted regression trees with a 
logistic link function [22]) to discriminate A from B. If a point x 
has fitted probability p of belonging to class A (versus B), it is 
assigned an anomaly score 2|p−μ|, where μ is the median fitted 
probability of belonging to class A. We perform 100 random A/B 
splits and average the anomaly scores to obtain the final ranking. 
2.2.6 Cross Prediction 
Suppose feature vectors have length J. Cross prediction [5] learns 
J conditional probability models of the form P(xj|x1,...,xj−1,xj+1,xJ) 
by applying a supervised learning algorithm (a modified version 
of Quantile Forests [18]) denoted as P(xj|x-j). It then scores a point 
x as anomalous according to the score 1−∏j P(xj|x-j). The 
underlying assumption is that there are correlations among the 
features so that the value of one feature can be predicted from the 
others. If this assumption holds, then a point is anomalous if one 
or more of its features cannot be predicted from the others (so 
P(xj|x-j) is small). The product of the P(xj|x-j) values is very small 
if many of the feature values are hard to predict, so this gives a 
high anomaly score to such points. We employ a cross-validation 
procedure to decide which features j to include in the product and 
delete those features that are not predictable. 
2.2.7 Grid-based Fast Anomaly Detection Given 
Duplicates (GFADD) 
Many traditional outlier detection methods are slow due to large 
numbers of duplicate points. Given a cloud of multi-dimensional 
points, GFADD [15] detects outliers in a scalable way by taking 
care of the major problem of duplicate points. Fast Anomaly 
Detection given Duplicates (FADD) solves duplicate problems by 
treating them as one super node rather than considering them 
separately. Moreover, GFADD applies a k-dimensional grid on 

the k-dimensional cloud of points and treats as super nodes only 
the grid cells that consist of more points than the number of 
nearest neighbors we are interested in. This method achieves near-
linear runtime given duplicates, while Local Outlier Factor (LOF), 
the traditional outlier method that constitutes our baseline, has 
quadratic runtime. GFADD can spot anomalies in data sets with 
more than 10 million data points, while the traditional LOF 
algorithm runs out of memory even for 20,000 data points. 
 One example of AD using GFADD in PRODIGAL is provided 
in Figure 3. On the two-dimensional space of log (net event 
count) vs. log (remote event count), GFADD spotted circled 
points where frequency of a remote event is much higher than that 
of net events. 
2.2.8 Vector Space Models 
VSM [2] deals with sequential data that represents, e.g, a user’s 
behavior over time. Specifically, VSM operates over an input 
dataset consisting of a set of (finite-length) sequences of events, 
where the events are discrete symbols drawn from a known, finite 
alphabet. In general, a raw dataset must be preprocessed to 
segment and abstract data appropriately into an amenable format. 
Given a set of input sequences, we create a single bag-of-words 
style feature vector for each sequence through standard n-
gramming. This feature vector consists of a count for each 
possible length=n sequence given the finite alphabet. The feature 
vector for a given sequence represents the number of times each 
n-gram appears in that sequence. We then compute pairwise 
cosine similarity over these feature vectors and assign each 
sequence a score based on its proximity to its nearest k neighbors 
according to this cosine similarity measure. We next rank all 
sequences based on this computed score. The higher a sequence’s 
rank, the more anomalous it is believed to be based on this 
algorithm. Recent approaches that use variants of the n-gram 
approach to represent activities in terms of their local event sub-
sequences [12] have inspired this approach. 
2.2.9 Temporal-Based Anomaly Detection 
Temporal-based AD aims to track and model user behavior at 
different temporal scales for detecting anomalies [17]. The 
hypothesis is that anomalous behavior is more easily and 
accurately recognized using multiple observations at different 
temporal resolutions. Further, users’ ability to mask anomalous 
behavior is diminished when observed at multiple temporal 
resolutions. We have applied temporal-based methods using 
hidden Markov models (HMMs) and particle filters for tracking 
users. Extending traditional particle filters improves their 
sensitivity. We use a gradient method to optimize particle cloud 
samples to more tightly track observations. By tightening the 
particle cloud to the observations while minimizing the effect to 
the variance of the particle cloud, the filter becomes more 
sensitive to anomalies. 
2.2.10 STINGER 
STINGER is a dynamic graph data structure capable of 
maintaining and representing temporal and semantic graphs with 
millions to billions of relationships between entities [1]. Edges 
and vertices are given types, weights, timestamps, and physical 
identifiers. Adjacencies are stored in semi-dense lists of blocks of 
edges. The data structure’s basic operations are thread-safe, which 
enables the insertion and deletion of edges and vertices at rates of 
millions of updates per second on a modern multicore shared-
memory x86 platform [9]. Combining this with a convenient 
parallel filtering and traversal allows algorithms to easily process 
and understand the structural changes in the graph over time to  

Figure 3: Anomaly detection using GFADD. 
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identify anomalous relationships, actors, and groups. In  
PRODIGAL, STINGER serves as a platform to enable dynamic 
graph analysis techniques on the relationships inherent in the 
dataset. Graph analysis speed enables recomputation of relational 
context, not only with new inputs, but more important, to permit 
preliminary detection results to refocus further analysis. 
2.2.11 Community Detection 
Our community detection algorithm identifies community 
structures within graphs stored in STINGER based on 
communication patterns, social structure, and resource sharing. 
The algorithm takes a similar approach to [25] and leverages 
STINGER’s parallel insertion and deletion for in-place operation. 
All vertices are initialized to their own communities, and all edges 
are scored. Trees of edges within the graph are constructed based 
on high-scoring edges and paths. These trees are contracted into 
the root communities, and the process is repeated for the resulting 
community graph until convergence of the edge scores. The 
algorithm is agnostic to the types of edges and vertices in the 
graph and the scoring function used; however, the scoring 
function can be defined to handle types separately.  The algorithm 
can be applied repeatedly using different scoring functions to seek 
out certain traits in the graph. Each iteration of the algorithm finds 
groups at a coarser granularity. Community members that connect 
between communities can be explored to find shifting allegiances. 
[23]. The resulting communities can serve as baseline comparison 
groups, and individual communities can be extracted. 
2.2.12 Streaming Community Detection 
When dealing with massive and rapidly evolving data, static 
community detection approaches may not keep up with the change 
in data because they require a very costly total recalculation after 
any changes. Streaming community detection computes 
incremental updates to the detected communities when data 
changes. A community graph is maintained over time. We assume 
that the effect of most data changes will be local. When updates 
do occur, we break up the maintained community graph by 
removing a set of vertices affected by the changes from their 
communities. The resulting, broken-down community graph is 
then reclustered by a static community detection algorithm. The 
speed-up results because the broken-down community graph is 
much smaller than the original graph, enabling the graph 
community structure to be tracked over time and significant 
changes to be detected. Additional details can be found in [23]. 
2.2.13 Seed Set Expansion 
Given a graph and a set of seed vertices in the graph as input, seed 
set expansion produces a subgraph, or community, that best 
contains the seed vertices. When entities are represented as 
vertices and their interactions as edges in a graph, given several 
entities of interest, perhaps flagged as anomlous, we may wish to 
know other entities related to these flagged ones. It may also be 
useful to extract a relevant subgraph containing these flagged 
entities in order to perform more computationally intensive 
analysis. We use a greedy, modularity maximizing approach to 
expand the seed set into a relevant subgraph. Details of the 
approach can be found in [24] with additional work in progress. 
The initial subgraph contains the seed vertices. In each iteration, 
the change in modularity that would occur by adding vertices to 
the subgraph is calculated and the highest scoring vertices are 
added.  
2.2.14 Betweenness Centrality for Streaming Graphs 
Within a graph, centrality metrics score the relative importance of 
each vertex and/or edge in the graph. In the case of betweenness 

centrality, the score given to each vertex s is the sum of the 
fraction of the shortest paths between vertices r and t that s lies on 
for all pairs r and t (r ≠ s ≠ t). For PRODIGAL, we have 
developed a novel algorithm for computing betweenness centrality 
for streaming graphs [11]. The new algorithm avoids computing 
betweenness centrality scores for vertices that do not have new 
paths going through them following the insertion of a new edge. It 
uses restricted breadth-first traversals to identify vertices whose 
shortest paths were affected and vertices whose betweenness 
centrality scores are affected by the those shortest path count 
changes. This significantly reduces the number of vertices and 
edges that are traversed and improves update response time so that 
approximations to betweenness can be maintained at the rate of 
change of the graph. We have shown in [11] that the algorithm is 
up to two orders of magnitude faster than recomputing. In 
PRODIGAL, this algorithm can be used to search out key actors 
and information flow points to find weaknesses and leaks within 
the organization. In [10] we extend our work and show how to 
increase the parallel scaling for computing betweenness centrality 
for streaming and static graphs. This approach also improves 
performance on a single processor.  
2.2.15 Interactive Graph Exploration (Apolo) 
Apolo [4] is an interactive graph visualization component of 
PRODIGAL, which helps analysts understand the relationships 
among anomalous entities flagged by various PRODIGAL 
algorithms. Apolo supports real-time graph exploration over 
million-node graphs, such as querying for nodes by their 
attributes, grouping nodes into super nodes to reduce cluster and 
promote understanding, visualizing subgraphs and interactively 
expanding them by bringing in neighboring nodes and edges. 
Unlike most graph visualization tools that keep the full graph in 
the main memory, which prevent them from handling large 
datasets, Apolo keeps the graph in an embedded database 
(SQLite), significantly reducing memory needs while maintaining 
high speed and scalability. Apolo also provides a built-in machine 
learning algorithm (Belief Propagation) that helps analysts find 
the most relevant subgraphs to visualize, given the analyst’s 
current nodes of interest. The algorithms works by computing a 
proximity score for each node based on how far it is from those 
nodes of interest (e.g., number of hops away, and the number of 
paths leading to them). Nodes with higher proximity scores are 
deemed more relevant and will be displayed to the analyst. 

2.3  Anomaly Detection Language 
Effective AD requires combining multiple methods applied to 
different baseline and peer group populations over distinct time 

 
Figure 4: Anomaly Detection Language Syntax 
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periods. For example, we may want to detect users (or 
collaborating groups of users) whose daily behavior over a recent 
month differs from their daily behavior over a previous six-month 
period with respect to themselves or to their peers in the same 
work group or job role. Traditional data flow diagrams cannot 
express these designs concisely, so we developed a visual AD 
language that enables the expression of such combinations of 
methods, data, baselines, and detection extents. While developed 
for IT detection, the language itself is domain-independent and 
may be applied to other domains. The language specifies the 
extent of the entities to be detected (e.g., individual users or 
groups of users) combined with the temporal extent of potential 
anomalies. Inputs to these expressions are transactional records of 
user activity and outputs are scores on these user-temporal 
extents.  
 The syntax of the language is shown in Figure 4; we refer to 
[19] for details concerning the syntax, and instead illustrate the 
language with an example, shown in Figure 5, targeting the IP 
Thief/Ambitious Leader scenario.  In this scenario, an individual 
enlists others to steal portions of IP that, when combined, enable 
them to start a competing organization. We begin by filtering 
user-days to those with sufficient file activity, join those with the 
IM user neighbor adjacency list, and sum up the features for each 
neighbor. We next add that total for each user to the user’s own 
features and convert the feature totals into ratios that can be 
compared across egonets of different sizes. To limit the baseline 
population to users fitting the leader profile, we keep those with a 
high percentage of file accesses in that category and use this set to 
score each user-day. As an additional indicator, we count phrases 
seen in IMs between users that fit the scenario, and we finally 
combine with the anomaly scores. 

3. EXPERIMENTS AND RESULTS 
PRODIGAL Framework explored combinations of features, 
entities, baselines and peer groups, and detection methods for ITs. 
[28] We used two separate months of data, with an unknown in 
advance number of independent red team inserts in each. We ran a 
wide variety of indicator detectors, AD algorithms, and scenario-
based detectors. We applied several performance metrics to 
understand the effectiveness of each, as well as of the whole suite 
of methods, for IT detection. 

3.1 Test Data 
For the experiments discussed in this paper, the primary red team 
scenario consisted of three insiders who collude over instant 
messages and corporate email to steal IP and form a new 

company. This is similar to the IP Thief Ambitious 
Leader scenario discussed in section 2.3, without the 
presence of an identifiable leader. The inserted 
scenario was unknown to the detectors (and to the 
research team) prior to the experiments. We 
discovered that the red team had inserted two variants 
of this scenario over the months of September and 
October 2012, inserting a total of six instances. A 
second scenario simulated users’ circumventing 
SureView’s data collection.   

3.2 Metrics 
The experiments reported here measure AD 
performance on entity-extents, which are either user-
months (the aggregation of a user’s activities over a 
month) or user-days. Metrics were chosen not only to 
measure detection accuracy of the individual 
algorithms, but also to measure their contribution to 

the overall task of providing leads to an analyst. We computed 
receiver operator characteristic (ROC) curves and area under the 
curve (AUC) as well as the approximate lift curves and Average 
Lift. AUC directly estimates the probability that a randomly 
chosen positive entity extent will be ranked higher than a 
randomly chosen negative one. Average lift estimates the 
improvement in target density delivered to later stages of a multi-
stage detection process. To directly measure impact on an overall 
detection system, we report numbers of targets in the top k. 
Number of positives at or above rank k (where k= 5, 10, 50, 100, 
500 for user-month methods, and k=50, 100, 500, 1000, 5000 for 
user-day methods) allow us to estimate the feasibility of 
employing a method of detection to provide starting points for 
analysis which may only be able to input a fixed number of such 
leads.   
3.3 Results 
We ran 484 experiments on two months of data with inserted RT 
scenario instances. September had 13 RT users with activity on 98 
separate user-days and October had 6 RT users with activity on 44 
user-days. Examples and discusion of results from five detection 
methods are followed by a summary of the entire set of results. 

3.3.1 IP Thief  Ambitious Leader Scenario Detector 
We constructed a scenario-based detector that corresponds to the 
design in section 2.3 for the IP Thief Ambitious Leader scenario. 
Figure 6 shows the ROC curve resulting from testing this scenario 
detector on September data. Note that a significant subset of user-
days rank very highly – one user ranks first, and five are identified 
in the top 100, while another set does so poorly as to be 
indistinguishable from random choice. In fact, the detector 
completely ignores 33 user-days, because they do not fit with its 
assumptions. This is exactly what we would expect from a 
scenario specifically designed to identify individuals on days 
when they behave like leaders of 
small groups exfiltrating IP.  

3.3.2 File Events 
Indicator 
With the File Events indicator 
method, we are looking for users 
who display abnormal behavior 
with respect to files, focusing on 
file events related to removable 
media drives and the number of 
distinct files that a user accesses. 
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Features include the ratio of file 
events on removable media to 
all file events and the ratio of 
distinct files on removable 
media to distinct files overall.   
Performance is also strong 
against the RT scenarios, which 
involved file copies to 
removable media.  One 
advantage of this indicator is 
that it ignores user-days with no 
removable drive activity. Thus, 
when it works at all, it works 

well enough to enable subsequent analytics. (See Figure 7 for the 
October ROC curve.)  When it is 
not applicable, it can be safely 
ignored. 

3.3.3 Relational Pseudo 
Anomaly Detection 
Results from RPAD were highly 
consistent across both test 
months. Feature normalization 
resulted in very high 
performance on our test data, 
achieving an AUC of 0.979 on 
the October data set. Figure 8 
shows the ROC curve. 

3.3.4 Repeated Impossible Discrimination Ensemble 
RIDE was also consistent across the 
test months. Features were derived 
from monthly aggregate-activity 
counts. Each user’s aggregate is 
compared to other users in the 
observed population and represented 
by the degree of statistical anomaly. 
This resulted in the best overall AUC 
of any AD algorithm, as well as 
placing all six target users in October 
in the top 5%. The lift curve is 
shown in Figure 9. 

3.3.5 Grid-based Fast 
Anomaly Discovery given 
Duplicates 
GFADD estimates the degree of 
anomaly of nodes in a graph with 
respect to their neighbors in the 
graph. As a result, local anomalies in 
a complex organization may be 

detected, even if they are 
globally unremarkable. This is 
different from using a priori 
peer groups as base 
populations. The lift curve 
(Figure 10) shows the top 100 
nodes contain five RT targets, 
resulting in lift values in the 
x20-x30 range. Furthermore, 
because the algorithm only 
returns high-confidence 
results, it provides reliable 
starting points. 

3.3.6 Overall Metrics 
Figure 11 shows results from multiple indicator, algorithm, and 
scenario-based experiments. The table has been sorted by the 
column labeled 500(0), which records the number of positive hits 
in the top ranked 500 user-months/top 5,000 user-days (for 
algorithms which focus on users’ activities over a month/day, 
respectively). AUC and average lift are as described earlier.  Note 
that methods’ performance per AUC or AvgLift was not always 
reflected in their raw hit output.  For example, Ambitious Leader 
Scenario on September data hit 9 of 98 targets in the top 50, and 
48 in the top 5,000. Shading is proportional to the range of values 
over each metric separately (hits, AUC, and AvgLift). All 
metrics are calculated with respect to the available ground truth 
(i.e., RT inserts). As expected, the URL indicator detector 
performed poorly, due to the lack of significant web-based 
activity in the inserted scenarios. This points out a critical issue in 
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Month Algo Detection Method 5(0) 10(0) 50(0) 100(0) 500(0) AUC AvgLift

Sept UMASS-1 RPAD up feature normalization 2 2 3 11 72 0.970 17.42

Sept UMASS-1 RPAD dp feature normalization 2 4 20 26 57 0.863 24.07

Sept UMASS-1 RPAD raw feature set; naive bayes; uniform pseudo-anomaly 0 0 10 26 56 0.879 16.06

Sept SAIC-6 Indicator Anomaly Detection - File 0 1 17 33 54 0.881 10.58

Sept SAIC-3 Scenario - IP Thief 0 0 7 16 54 0.851 9.79

Sept SAIC-8 Indicator Anomaly Detection - File vs URL 1 2 4 9 50 0.732 6.04

Sept SAIC-5 Scenario - Ambitious Leader 9 12 43 46 48 0.806 34.05

Sept UMASS-2 RDE alpha version; raw feature set; 10k training 0 0 7 12 42 0.864 10.75

Oct UMASS-1 RPAD up feature normalization 2 2 5 11 37 0.979 30.33

Oct SAIC-6 Indicator Anomaly Detection - File 0 0 2 14 31 0.874 8.42

Oct UMASS-1 RPAD g129dm feature normalization 0 0 1 3 29 0.914 13.70

Oct SAIC-8 Indicator Anomaly Detection - File vs URL 0 0 2 8 28 0.824 6.02

Oct UMASS-1 RPAD raw feature set; naive bayes; uniform pseudo-anomaly 0 0 0 3 20 0.909 9.17

Sept SAIC-2 Scenario - Saboteur 0 1 4 6 20 0.746 3.79

Oct SAIC-3 Scenario - IP Thief 0 0 0 3 15 0.839 7.34

Oct SAIC-2 Scenario - Saboteur 0 0 0 0 15 0.810 3.07

Oct SAIC-5 Scenario - Ambitious Leader 6 7 12 12 15 0.789 80.20

Sept SAIC-1 Max(Cross & Long Outliers) 0 0 0 1 14 0.846 3.99

Sept OSU-3 Ensemble GMM Density Estimation, Raw Counts 0 0 0 0 12 0.970 26.17

Oct GTRI-5 Temporal Based Anomaly Detection 0 0 0 0 12 0.849 6.14

Sept OSU-1 GMM Density Estimation using Raw Counts 0 0 0 0 10 0.940 7.83

Sept OSU-4 RIDE via unusualness of counts vs. company 0 0 0 2 10 0.920 8.05

Sept SAIC-4 Scenario - Fraudster 0 0 0 1 10 0.693 1.62

Sept SAIC-9 Indicator Anomaly Detection - File vs URL vs Logon 0 0 3 4 8 0.530 1.26

Sept OSU-2 Cross Prediction via unusualness of counts, vs company 0 1 1 1 7 0.872 8.86

Oct SAIC-4 Scenario - Fraudster 0 1 1 1 7 0.713 4.57

Oct OSU-4 RIDE via unusualness of counts vs. company 0 0 1 3 6 0.981 26.18

Oct OSU-3 Ensemble GMM Density Estimation, Raw Counts 0 0 0 0 6 0.970 15.84

Sept OSU-4 RIDE using Raw Counts 0 0 0 2 6 0.892 7.09

Oct UMASS-2 RDE alpha version; raw feature set; 10k training 0 0 0 0 5 0.895 6.10

Sept SAIC-7 Indicator Anomaly Detection - URL 0 0 0 1 5 0.477 0.91

Sept CMU-6 Grid-based Anomaly Detection given Duplicates 2 5 5 5 5 0.301 2.19

Sept GTRI-5 Temporal Based Anomaly Detection 0 0 0 0 3 0.502 1.00

Oct CMU-6 Grid-based Anomaly Detection given Duplicates 1 1 1 2 3 0.465 1.77

Oct OSU-3 Ensemble GMM via unusualness of counts, vs company 0 0 0 0 2 0.906 5.32

Oct OSU-4 RIDE using Raw Counts 0 0 0 0 2 0.888 4.69

Oct GTRI-4 Vector Space Models 0 0 1 2 2 0.694 8.64

Sept GTRI-4 Vector Space Models 0 0 1 1 2 0.618 2.61

Oct SAIC-9 Indicator Anomaly Detection - File vs URL vs Logon 0 0 0 0 2 0.425 0.87

Oct OSU-1 GMM Density Estimation via unusualness of counts, vs company 0 0 0 0 1 0.881 4.18

Oct OSU-2 Cross Prediction via unusualness of counts, vs company 0 0 0 0 1 0.833 3.15

Sept OSU-3 Ensemble GMM via unusualness of counts, vs company 0 0 0 0 1 0.787 2.20

Sept OSU-1 GMM Density Estimation via unusualness of counts, vs company 0 0 0 0 1 0.780 2.16

Oct OSU-1 GMM Density Estimation using Raw Counts 0 0 0 0 0 0.900 4.99

Oct SAIC-1 Max(Cross & Long Outliers) 0 0 0 0 0 0.828 3.27

Oct SAIC-7 Indicator Anomaly Detection - URL 0 0 0 0 0 0.507 0.93

Oct OSU-2 Cross Prediction using Raw Counts 0 0 0 0 0 0.388 0.92

Sept OSU-2 Cross Prediction using Raw Counts 0 0 0 0 0 0.287 0.66  
Figure 11: Overall Metrics 
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testing unsupervised methods against an unknown set of targets – 
the metrics are only as perceptive as the ground truth they employ.  
Two critical points to take from this are that experiments must be 
repeated with different inserted targets to explore the effectiveness 
and robustness of methods, and ways of combining multiple 
methods must be developed so that the system can build upon the 
strengths of each without interfering with one another. 

3.4 Effectiveness of Multiple Methods 
Measures of performance of individual algorithms are useful; 
however, we are also interested in how combining these 
algorithms contributes to overall system effectiveness. Methods 
which produce the same rankings may be redundant, whereas 
methods which rank different targets highly may contribute to 
reducing misses in the overall system. To meaningfully measure 
this inter-method correlation, it is important to consider the 
correlation of non-targets as well as targets.   
 Figure 12 shows the ranking performance of four Monthly AD 
algorithms on the October data set. Lines connect each of the six 
RT augmented users’ positions across four algorithms. Figure 12 
also shows the highest rank (as a percentile) each user achieved in 
any algorithm. We note that each scenario had at least one 
representative at the 99.5% level (positions 30 and 31) from some 
AD algorithm. Subsequent analysis, based on observed user 
interactions, likely would find the other participants and uncover 
the joint scenario activity. Such analysis, although more costly 
and involved, can be initiated from the top-scoring starting points.  

3.5 Feature Strength Estimation 
Eighty-three scalar features are obtained from the collected data. 
An interesting question is: Which of these features are the most 
useful in detecting anomalies? Intuitively, the potential usefulness 
of a percentile-normalized feature when used in combination with 
other features depends on the distribution of its values: features 
whose values have high variability (“diversity”) have more 
potential unusual combinations with other features—a greater 
“feature strength”—than features whose values are nearly 
constant.  

 Figure 13 shows the feature strength (average squared distance 
from the mean) of 83 features over a month of all user-days 
(features on x-axis sorted by strengths). The dotted vertical line 
gives a naïve “cutoff” for weak features. 
 Figure 14 extends this analysis to address the following 
questions: What features contribute most to a high pseudo-
anomaly detection score? Top shows feature strengths computed 
using only the top 5,000 RPAD-ranked user day instances.  What 
features contribute most to high insert scores? Inserts shows 
feature strengths computed using only the RT inserts. What 
features differentiate inserts from high non-insert scores? 
Relative shows relative feature strengths computed as the 
distance between the top 5,000 feature strengths and the inserts 
feature strengths. In Figure 14, the x-axis feature ordering is by 
relative strength, and the weak feature cutoff line is shown 
horizontally. Features with an all-instances strength (all) below 
the cutoff line would be excluded by a weak feature cutoff 
strategy. 
 We found that feature strength analysis indicates that low all-
inserts strength features were significant when used jointly and 
that a naïve strategy that focused only on the strongest all-
instances features would miss these important feature correlations. 
We validated this observation by running RPAD without the 29 
all-instances-strength features below the cutoff line.  The AUC 
dropped from 0.970 with all features to 0.793 without those 
“weak” all-instances-strength features. 
 The strongest relative features, determined using only RT insert 
user-day labeling and without any semantic knowledge of RT 
scenarios, were consistent with user behaviors in the scenarios 
once those were revealed to us. (The top four relative-strength 
features are shown in the callout box in Figure 14.) 
 We concluded that manual methods, in which analysts focus on 
small numbers of apparently high-value features, are unlikely to 
detect anomalies characteristic of IT scenarios, because they 
would miss the most important combinations of individually weak 
features and because analysts would be overwhelmed by the 
number of relevant features. 

4. CONCLUSIONS AND FUTURE WORK 
The work reported here demonstrates the feasibility of detecting 
the weak signals characteristic of ITs using a novel set of 
algorithms and methods. However, additional research and 
engineering is needed to enable these techniques to be useful for 
real analysts in an integrated system. Some of the methods that we 

have developed may be useful as components of existing 
systems; and we are actively exploring these possibilities 
with various government users. We also anticipate live 
field testing of these methods in the near future. 
 In the near term, we are continuing to investigate how to 
improve our coverage of the IT space by combining results 
from indicators, anomalies, and scenario-based detectors 
and by exploring different combinations of algorithms. We 
will be extending our feature coverage to include topic and 
sentiment detected in the contents of email and IM 
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communications. And we are continuing our experiments each 
month with additional data and new scenarios provided by the red 
team. These ongoing experiments enable us to further validate our 
current conclusions and to cover a wider range of IT scenarios. 
 In the longer term, we hope to be able to use additional data 
sources to provide more accurate detection and also to generate 
explanations of anomalous behavior that can be understood by 
human analysts. We believe that this is a key to developing a 
system that is useful by analysts instead of computer scientists.  
We also need to scale-up to continuous operation on 
organizations of about 100,000 users. 
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