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Motivation Generative Mixture Model Inference
Example problems that look like this: (For continuous data in k dimensions) Estimate ¢ from the data itself. Guess «.
* Who knows each other? Score each pair as if it were independent from the
* Infer social ties based on co-located [Crandalll et al., PNAS Data is a mixture of others. Likelihood ratio for a pair:
photographs or shared employment ~ 2010; Friedland & Jensen, ~ Distribution
histories ngDV\f\?V%;%ggwggy&et singletons:  X; ~ ¢ . of most data P(c; =1] x,...,x,) _ Pl =11x;,x))
. Are[;chese real:y .the safmlg T(efrsond? Sr.i’hari, \ioe zoio; g ﬁ P(Cij =0|x,,...,x.) P(Cij =0]|x.,x, )
* Detect coalitions of click-frau - ~ :
Elmagarmid et al., TKDE | Displacement P(x.,x: |c. =) P(c, =)
attackers 20071 and pairs:  d~¢ ‘ distribution: = — :
* Determine whether a crime scene _ . '2 P(x.,x;|c. =0)P(c. =0)
fingerprint has a match in a database X; =m+d ¢ = Gaussian(0, vVI) 'P(ml| ; P(d | £) ;’(c _ )
* Are these really the same entity? X; =m- d LR _ 2 ¢ i
* |dentify duplicate records to merge in , P(x; | ¢) P(Xj | 9) P(C,-,- = 0)
3 database generated to produce r pairs, all

non-overlapping.

Drawbacks to existing solutions: often application-specific,

non-probabilistic, or use only pair similarity

Task Formulation Gaussian data
, _ Synthetic data experiments
Which of these points were When ¢ is radially symmetric Gaussian(0, ¢2/), £t £ changi £t £ .
- generated in pairs? l(m’%d,z(z_l)) ect of changing t ect of mis-guessing t
(Ground truth pairs = red) — e2 t2 X const o | o |
| MIs)/P(mw d
- N dentifying these pairs should be ranking depends only on magnitude of midpoint (m), - - . \
e oaef e a function of the pairs’ magnitude of displacement (d), and - -
T » o 0 g0 . . . _ B ] g’ . N random g’ s B """""""""""""""""
. ° o ’ Slmllarlty (t O ) ° P(d1¢)/P(m I g ° _:—"==/==]Ir$£
v - ° * Rarity/Sparseness of region o | it Ty
I Effects of Varying Parameters hE . . . s
Given a data set, calculate a score for every possible pair. Meaning Parameter Effect of Effect of mis- | |
Evaluate the ranking of pairs using AUC. ' ' : .
5OTP 8 changing S t balances how much optimal method uses distance
Goa IS Number of pairs ror E(r) NDOGS not E}ffect rabﬂlgf;g- (d) (often performs well alone) vs. rarity (m) of a pair.
ecessary for probability
. G ot ation: If we k " o 4 - estimates. At lowest t, displacement d suffices to separate the
eneric .ormu ation: If we n.ew everything about a domain, how Number of points " Does not affect distributions.
would this task be solved optimally? ranking, only —- [n always | | | | o
 Towards realistic scenarios: will this method still be feasible... probability observed] At t- X d carries no information to distinguish
* When number of pairs or distances between pairs are estimates positive from negative pairs.
unknown? Standard o
e \When data does not come from this model? deV|al'|on of main ThGOFGUCB' dIStrlbUthnS Of
* Need for model: will a simple distance-only baseline be distribution ¢ Only matter via the ratio positive and negative pairs
competitive with the model? If so, why and under what Standard v _v g g Ry B BB g
. 1 1 t t t -
circumstances? d,ev'at'on of © - N —
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In the model system, for a given ¢:

* A single parameter, t, governs problem difficulty. It describes

how far apart positive pairs are compared to negative pairs.

e t = 0 < mostly only distance matters Real Data Experiments: Vary vector t. Compare our inferencle method
| to (scaled Euclidean) distance P(d | €), rarity

ot = Ny < distance does not distinguish positive from P(m|¢) ’
2 . approximation Pdle)
negative pairs Twins P(m [ ¢)
* When t is unknown, Given birthweight and Apgar scores, re- . Cell Phones /
: : : : : , , , . , Twins , .
* Guessing too low overweighs distance. But distance is a identify twins within a data set of babies. Reality Mining
strong baseline, so it’s only a mild drop-off. [National Center for Health Statistics, 2000] A o _
. . . . o | | best found, using t = (0.3, 0.5)
Guc?ssmg too high overweighs rarity. Performance can get Cell Phones / Reality Mining s LT Wp(dlg>/p<ml¢>
arbitrarily bad. . ) 597 Par) :
| - Pd]e) . Given seven features of a user’s weekly cell ) \ e L\ Pele)
* The approximationp(m | ) is more robust than the optimal phone activity, re-identify instances of the 22T e 2 —
likelihood ratio same user across different weeks. [Eagle & S o e
* In real data sets, Pentland, 2006} S *]
* Task is moderately difficult:t = 0.5 , and optimal LR is 00 02 os o5 o 0o o2 04 os o8

A
t =constx (1,1) It\=const><(1,1,1,1,1,1,1)

markedly better than distance-only.
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