

Copy or Coincidence?

A Model for Detecting Social Influence and Duplication Events

Lisa Friedland, David Jensen (School of Computer Science), Michael Lavine (Department of Math and Statistics) **University of Massachusetts Amherst**

Download this paper at http://goo.gl/2Ag7M

Motivation

Example problems that look like this:

- Who knows each other?
 - Infer social ties based on co-located photographs or shared employment histories
- Are these really the same person?
 - Detect coalitions of click-fraud attackers
- Determine whether a crime scene fingerprint has a match in a database
- Are these really the same entity?
 - Identify duplicate records to merge in a database

[Crandall et al., PNAS 2010; Friedland & Jensen, KDD 2007; Metwally et al., WWW 2007; Su & Srihari, NIPS 2010; Elmagarmid et al., TKDE 2007]

Drawbacks to existing solutions: often application-specific, non-probabilistic, or use only pair similarity

Task Formulation

Which of these points were generated in pairs? (Ground truth pairs = red)

Identifying these pairs should be a function of the pairs'

- Similarity
- Rarity/Sparseness of region

Given a data set, calculate a score for every possible pair. Evaluate the ranking of pairs using AUC.

Goals

- Generic formulation: If we knew everything about a domain, how would this task be solved optimally?
- Towards realistic scenarios: will this method still be feasible...
 - When number of pairs or distances between pairs are unknown?
 - When data does not come from this model?
- Need for model: will a simple distance-only baseline be competitive with the model? If so, why and under what circumstances?

Findings

In the model system, for a given ϕ :

- A single parameter, t, governs problem difficulty. It describes how far apart positive pairs are compared to negative pairs.
 - $t \rightarrow 0 \Leftrightarrow$ mostly only distance matters
 - $t = \frac{1}{\sqrt{2}}$ \Leftrightarrow distance does not distinguish positive from negative pairs
- When t is unknown,
 - Guessing too low overweighs distance. But distance is a strong baseline, so it's only a mild drop-off.
 - Guessing too high overweighs rarity. Performance can get arbitrarily bad.
 - The approximation $\overline{P(\mathbf{m} \mid \phi)}$ is more robust than the optimal likelihood ratio
- In real data sets,
 - Task is moderately difficult: $\mathbf{t} \approx 0.5$, and optimal LR is markedly better than distance-only.

Generative Mixture Model

(For continuous data in *k* dimensions)

generated to produce r pairs, all non-overlapping.

Inference

Estimate ϕ from the data itself. Guess ε . Score each pair as if it were independent from the others. Likelihood ratio for a pair:

$$\frac{P(c_{ij} = 1 \mid \mathbf{x}_{1}, \dots, \mathbf{x}_{n})}{P(c_{ij} = 0 \mid \mathbf{x}_{1}, \dots, \mathbf{x}_{n})} \approx \frac{P(c_{ij} = 1 \mid \mathbf{x}_{i}, \mathbf{x}_{j})}{P(c_{ij} = 0 \mid \mathbf{x}_{i}, \mathbf{x}_{n})}$$

$$= \frac{P(\mathbf{x}_{i}, \mathbf{x}_{j} \mid c_{ij} = 1) P(c_{ij} = 1)}{P(\mathbf{x}_{i}, \mathbf{x}_{j} \mid c_{ij} = 0) P(c_{ij} = 0)}$$

$$LR = \frac{\frac{1}{2^{k}} P(\mathbf{m} \mid \phi) P(\mathbf{d} \mid \varepsilon) P(c_{ij} = 1)}{P(\mathbf{x}_{i} \mid \phi) P(\mathbf{x}_{j} \mid \phi) P(c_{ij} = 0)}$$

Gaussian data

When ϕ is radially symmetric Gaussian(0, $\sigma^2 I$),

$$= e^{\frac{1}{2}\left(m'^2 + d'^2\left(2 - \frac{1}{t^2}\right)\right)} \times const$$

ranking depends only on magnitude of midpoint (m), magnitude of displacement (d), and ratio of standard deviations ($t = \frac{v}{t}$).

Effects of Varying Parameters

Meaning	Parameter	Effect of changing	Effect of mis- guessing
Number of pairs	r or E(r)	Does not affect ranking. Necessary for probability estimates.	
Number of points	n	Does not affect ranking, only probability estimates	[n always observed]
Standard deviation of main distribution ϕ	σ	Only matter via the ratio $t = \frac{v}{\sigma}$	
Standard deviation of displacement distribution ϵ	V		
Number of dimensions	k	Higher k makes problem easier	[k always observed]

Synthetic data experiments

Effect of changing t

t balances how much optimal method uses distance (d) (often performs well alone) vs. rarity (m) of a pair.

At lowest t, displacement d suffices to separate the distributions.

At $t = \frac{1}{\sqrt{2}}$, d carries no information to distinguish positive from negative pairs.

Theoretical distributions of positive and negative pairs

Real Data

Twins

Given birthweight and Apgar scores, reidentify twins within a data set of babies. [National Center for Health Statistics, 2000]

Cell Phones / Reality Mining

Given seven features of a user's weekly cell phone activity, re-identify instances of the same user across different weeks. [Eagle & Pentland, 2006]

Experiments: Vary vector $\hat{\mathbf{t}}$. Compare our inference method to (scaled Euclidean) distance $P(\mathbf{d} \mid \varepsilon)$, rarity $\frac{\mathbf{r}}{P(\mathbf{m} \mid \phi)}$, approximation $P(\mathbf{d} \mid \varepsilon)$.

